【活动地点 】 班级教室【活动准备】 1.布置有关的节目,指导学生进行练习。2.周围环境的布置以及有关材料的准备。【活动过程】一、主持人出场宣布班会开始A:我们是21世纪的主人;B:我们是祖国的未来和希望;A:我们是充满生机的新一代。B:然而,有的人却没有迈好青春的第一步,而误入了法网,给自己留下了人生的永久遗憾,也给我们敲了警钟。A:是的,我们一定要迈好关键的第一步,下面我们观看小品。 (表演小品:生A怀疑生B偷了他心爱的钢笔,但由于没有证据,情急之下两人起了争执,生A争不过生B。于是,放学之后,生A找了他所谓的“铁哥们”,跟踪生B并殴打他。)B:刚才我们观看了小品,相信大家一定有所感受,现在大家讨论一下,然后我们各抒己见吧!A:我宣布X年级X班,A、 B:《遵纪守法与法同行》主题班会正式开始。
活动目标: 1、让幼儿了解各消化器官的功能和食物在人体内消化吸收过程2、学习简单的自我保护方法3、培养幼儿良好的饮食和卫生习惯活动准备: (1)电脑制作《小豆子的旅行》(或图片及小豆子旅行的故事录音)(2)健康知识卡片、消化图、自制健康行为棋活动过程:
1、让幼儿了解各消化器官的功能和食物在人体内消化吸收过程2、学习简单的自我保护方法3、培养幼儿良好的饮食和卫生习惯活动准备: (1)电脑制作《小豆子的旅行》(或图片及小豆子旅行的故事录音)(2)健康知识卡片、消化图、自制健康行为棋活动过程:
活动准备 课件,火车头饰,各种动物的头饰、图片。 活动过程 一、谈话交流,导入课题。 出示课件(火车):听!什么声音?开来了一列小火车,火车上有许多小动物,你们猜!会是谁呢? 二、示范讲解,学说句式 1、利用课件学习短句。 猜一猜,谁坐在火车上?小朋友猜对后,出现小动物。 演示介绍第一列车厢:听一听,小青蛙说什么? (我是青蛙呱呱叫,坐上火车快快跑) 幼儿集体、个别练习。
3、培养训练生活技能,学习穿线,系鞋带的方法,提高幼儿的动手能力。4、发展幼儿的想象力、合作能力。 活动准备1、适宜的场地。2、圆形纸板,纸板中心位子钻两个小洞。3、每人一条塑料绳。 活动过程一、活动身体,直接引入课题1、纸板是怎么玩得?提出问题让幼儿思考。2、谁愿意来试一试。个别幼儿尝试。3、你还能怎么玩纸板?加深问题难度,提供想象空间。
【重难点】 重点:了解动物主要是通过声音、行动和气味三种方式传递信息。 难点:了解动物运用气味的联络方式。【活动准备】 知识:课前请幼儿搜集有关动物间联络方式的知识。 物质:各种动物的图片、展板、头饰、课件等。【活动过程】(一)导入:激发兴趣,引出主题。 1.教师口技表演(小鸟叫声),激发兴趣。 过渡语:小鸟虽然不会说话,但它可以用叫声来联络伙伴,那你们想知道其他动物是怎么联络伙伴的吗?今天我就给你们带来了动物交流联络时的录像,让我们一起看一看。 2.观看两种动物的联络方式,引出主题。 提问:蜘蛛遇到危险时,是怎样联络伙伴的? 蜜蜂是怎样跳舞的?我们一起来学学。(摇摆舞,八字舞) 你知道其它动物是怎样联络的? 过渡语:动物之间的联络方式有很多很多,下面就请小朋友和你的小伙伴边看着大图片边交流讨论:其它动物都是怎样联络的。孩子们,请到这边来!(二)展开:了解动物的三种主要联络方式。 1.幼儿自由观看讨论动物图片,发现学习。 2.引导幼儿了解动物主要的三种联络方式。 (1)幼儿交流自己知道的动物的联络方式。 (2)幼儿在充分说的基础上,教师进行动物联络方式的归类。
《我家是动物园》这个故事,让孩子们充满了惊喜和快乐,它能让孩子产生幽默与共鸣,并展开合理的联想。 “家”怎么会是动物园呢?这让孩子产生了好奇。而读完作品后,从作品中,他们感受到了人与人,人与动物之间的关系,并认识到各种不同生命和谐相处是一个美好并值得努力的理想。 二.结合生活,合理联想 孩子有自己的朋友,他们会为一件小事而吵架,会为朋友的一句话而委屈,会一起玩得很高兴,会和朋友说悄悄话……。 迁移作品经验,让孩子把朋友和动物形象展开联想,创设情境,把班级比作动物园,把熟悉的小朋友比作可爱的小动物,这对他们来说是一种需要的满足。 本次活动,需要引导孩子从朋友的外表,习惯,喜好等方面对朋友有一个综合形象的联想。与此同时,挖掘不同状态下朋友的不同特点,如:吵架的时候,一起玩的时候,哭的时候,笑的时候,分别象什么。这些经验都应该是孩子在这一年来,与朋友的相处中累积的感性经验和理性思考。 能体会朋友间的“幽默”形象的比喻,亮出自己观点,去欣赏、接纳别人的优点,理解、宽容别人的缺点,同时去帮助、支持他人有合作的意识。 三.班级的背景特点及价值追求 孩子们很快就要离开幼儿园,进入小学阶段的学习。孩子们非常珍视友谊:赠送礼物、保存着朋友的小名片……能让孩子在毕业的时候,感受到我们这个动物班级的欢乐,感受到每个小动物的可爱,从小在他们内心播洒友谊的种子,珍藏最初的友谊。将来无论走到哪里,在心中总会有“小动物”朋友陪伴着他。
地球一小时(Earth Hour)是世界自然基金会(WWF)应对全球气候变化所提出的一项倡议,希望家庭及商界用户关上不必要的电灯及耗电产品一小时。来表明他们对应对气候变化行动的支持。过量二氧化碳排放导致的气候变化目前已经极大地威胁到地球上人类的生存。公众只有通过改变全球民众对于二氧化碳排放的态度,才能减轻这一威胁对世界造成的影响。地球一小时在3月的最后一个星期六20:30~21:30期间熄灯。活动由来:“地球1小时”也称“关灯一小时”,是世界自然基金会在2007年向全球发出的一项倡议:呼吁个人、社区、企业和政府在每年三月最后一个星期六20:30~21:30期间熄灯1小时,以此来激发人们对保护地球的责任感,以及对气候变化等环境问题的思考,表明对全球共同抵御气候变暖行动的支持。这是一项全球性的活动,世界自然基金会于2007年首次在悉尼倡导之后,以惊人的速度席卷全球,大家都来参加这个活动。[1] “地球1小时”活动首次于2007年3月31日在澳大利亚的悉尼展开,一下子吸引了超过220万悉尼家庭和企业参加;随后,该活动以惊人的速度迅速席卷全球。在2008年,WWF(中国)对外联络处透露,全球已经有超过80个国家、大约1000座城市加入活动。2013年,包括悉尼歌剧院、帝国大厦、东京塔、迪拜塔、白金汉宫在内的各国标志性建筑也在当地时间晚八点半熄灯一小时。[2] ,其中包括巴勒斯坦、法属圭亚那、加拉帕戈斯群岛、卢旺达、圣赫勒那岛、苏里南、突尼斯等首次参与“地球一小时”的国家和地区。在中国,北京鸟巢、水立方、世贸天阶等标志性建筑同时熄灯,同一时段,从上海东方明珠到武汉黄鹤楼,从台北101到香港天际100观景台,中国各地多个标志性建筑均熄灯一小时,全国共有127个城市加入“地球一小时”活动。
活动年级:二年级一、活动目标:1、通过讨论,让孩子明白什么是习惯,并区分好习惯和坏习惯,知道一个好的习惯对于自己的重要性。2、主要针对“一天好的习惯养成”,通过讨论、画画等手段,让学生了解一天都可以做什么事情。3、通过《一天好习惯养成表》的填写,让学生为自己一天的生活做合理科学的安排,并按照表格执行,以养成一日良好习惯。4、通过教师的总结,引领学生一起回顾本学年的特色班级活动,以画配文的形式再次展现所涉猎的其他好的习惯养成。二、活动重点:通过主题班会活动,让学生养成良好的习惯三、活动过程:1、教师导入:我们所处的环境不是真空,在我们的身边和周围存在着种种不文明的现象,道德垃圾寻找活动旨在引导我们从身边、从自身细细地寻找种种不良思想和不良行为,并加以辨析,引导我们承担一个公民的社会义务,关注社会。为了让同学能明辨是非,端正行为,我们将开展“养成好习惯我能行”系列活动。
重点难点:1、要让学生认识到生命的重要性。2、学会用合法的手段机智灵活的处理问题,避免自己身陷险地或脱离险地。教学方法:事例引入,激发兴趣。抓住重点环节,深入领悟。问题讨论,拓展思路。教学过程:一、导入:1、说起维权大家的话题一定很多,那你们知道自己有什么权力吗?(使学生了解未成年人的合法权利)2、你们还有生命的权利,有紧急避险的权利。当遇到特殊情况时要随机应变机智灵活的保护自己。请看这样一个事例。(大屏幕显示事例内容)二、分析理解(一)提出问题,说说自己的理解1、看了这个事例,你们能说说于杰是怎样脱离虎口的?2、于杰是个什么样的孩子。你向于杰学习什么?(二)结合实际。说说身边的故事。根据书、保,收听广播,上网搜索的材料说说你还知道哪些少年自护自救的故事,讲给同学们听。
教育目的:1、让学生通过发生在生活当中真实的交通事故,明确其危害性和造成的原因。2、能够在日常生活当中自觉的遵守交通规则,懂得生命的宝贵,能够珍爱自己的生命。教学过程:一、导入师言:交通安全,一个永恒的话题。交通安全,一个涉及人生质量、家庭幸福的话题。1886年,当德国人卡尔?奔驰发明世界上第一辆以汽油做燃料的机动车以来,人类在向现代文明迈进的同时,也随之带来了交通事故这一灰色阴影。一个活蹦乱跳的躯体在一瞬间成为车轮下的亡灵,一个好端端的家庭因为惨痛的车祸而支离破碎,一百多年来死于车祸、伤残等交通事故的人数触目惊心,由此而造成的经济损失更是让人叹息。
二、活动重点和难点重点:掌握七步洗手法每一步的操作要领。难点:自觉养成用正确洗手方法洗手的习惯。三、活动准备(一)材料准备:1~3套洗手用品,包括水龙头(图片)、洗衣液或肥皂、毛巾。(二)课件准备:投影仪、音响、白板、ppt演示文稿、视频、图片、小奖品等。(三)场地准备:设施齐全的儿童洗手区域
教学目标:1.能利用三角函数概念推导出特殊角的三角函数值.2.在探索特殊角的三角函数值的过程中体会数形结合思想.教学重点:特殊角30°、60°、45°的三角函数值.教学难点:灵活应用特殊角的三角函数值进行计算.☆ 预习导航 ☆一、链接:1.如图,用小写字母表示下列三角函数:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三边长有什么特殊的数量关系?如果∠A=45°,那么三边长有什么特殊的数量关系?二、导读:仔细阅读课本内容后完成下面填空:
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
(8)物价部门规定,此新型通讯产品售价不得高于每件80元。在此情况下,售价定为多少元时,该公司可获得最大利润?最大利润为多少万元?若该公司计划年初投入进货成本m不超过200万元,请你分析一下,售价定为多少元,公司获利最大?售价定为多少元,公司获利最少?三、小练兵:某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,销售量y(件)与销售单价x(元)之间的函数关系式为y= –20 x +1800.(1)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,不高于78元,那么商场销售该品牌童装获得的最大利润是多少元?(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,那么商场销售该品牌童装获得的最大利润是多少元?
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。