提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

部编人教版六年级上册《青山不老》说课稿(一)

  • 《不懂就要问》说课稿

    《不懂就要问》说课稿

    如在教学第三段时,首先要求学生默读课文,边读边思考“这一自然段有几句话;每一句讲什么?这一自然段讲什么?”充分调动学生各个器官,又培养学生的自学能力。掌握了学习自然段的方法。在学生朗读、议论后,再引导学生理解“这样胡里胡涂地背,有什么用呢?”的意思,最后找出孙中山的问话,并体会孙中山的精神。

  • 中班科学《水不见了》说课稿

    中班科学《水不见了》说课稿

    中班幼儿会对水本身感兴趣,但他们的兴趣只是停留在玩水上,科学活动《水不见了》的主要目的是让幼儿通过实验、操作自己探索“水不见了”的原因。培养幼儿对周围事物现象感兴趣,有好奇心和求知欲。本次活动要求幼儿了解生活中有些东西是容易吸水的,有些东西不容易吸水,能吸水的东西在吸饱水后(饱和后)也就不能吸水了。一般来说,孩子对理论知识较难明白,但如果经过自己动手操作得出的结论往往比老师的讲述要深刻得多,因此我们把本次活动的目标定为:1、通过动手操作发现生活中有些东西是容易吸水的,有些东西不容易吸水,能吸水的东西在吸饱水后(饱和后)也就不能吸水了。

  • 中班安全《不乱吃东西》说课稿

    中班安全《不乱吃东西》说课稿

    中班的幼儿个性开始形成、独立,对周围事物充满好奇,急于想去探索与体验,却往往忽视了自身的安全。在日常生活中,幼儿很喜欢把一些小硬片、碎纸、玩具、蜡笔、橡皮泥等东西放入口中;幼儿园放学时,有的幼儿吵着要吃门口摊点的油炸、不卫生小食品;个别幼儿不生病也硬缠着父母带药到幼儿园......这些都表示幼儿的自我保护意识差,缺少生活经验和常识。新纲要明确要求:幼儿园必须把保护幼儿的生命和促进幼儿健康放在工作首位,要密切结合幼儿的生活和活动进行安全、保健等方面的教育,以提高幼儿的自我保护能力。为了帮助孩子们建立正确的安全观念;提高自我安全保护意识;学习应对安全事件能力,所以我设计此次《不乱吃东西》主题活动,此活动来源于幼儿,又服务于幼儿;既符合幼儿的现实需要,又利于其长远发展,有助于拓展幼儿的生活经验和视野。

  • 生活离不开他们 说课稿

    生活离不开他们 说课稿

    (一)谈话导入1. 谈话。 师:同学们,我们每天都要用到很多生活、学习等用品,这些用品都是各行各业的劳动者通过劳动提供的。我们的生活能不能离开他们呢? 生:自由回答。 师:今天我们就来探究一下关于劳动和劳动者的话题。2.板书课题:生活离不开他们(二)讲授新课。 活动一:离不开他们的劳动(一)说一说,交流: 你所知道的不同行业劳动者的具体劳动内容,他们的劳动与我们日常生活有什么关系呢?①我们每天吃的粮食和蔬菜离不开农民的劳作。②我们所穿的衣物离不开纺织工人的劳动。③我们住的房子离不开建筑设计师和建筑工人的辛勤劳动。④南来北往运送旅客的列车离不开驾驶员、列车员和铁路养护工人的劳动。(二)看一看,想一想。1. 让我们来看一看,在一天的生活中,哪些劳动者为李东和他的家人提供了服务和方便。①公交车驾驶员的劳动为李东的上学提供了交通方便。②商场工作人员的劳动为李东妈妈的购物提供了方便。③餐馆厨师的劳动和服务员的服务,为李东爸爸的就餐提供了方便。

  • 我们不乱扔  说课稿

    我们不乱扔 说课稿

    尊敬的各位评委、老师,大家好,今天我说课的题目是《我们不乱扔》(板书课题)下面我将从说教材、说教法、说教学过程、说板书设计四个方面来对本课作具体阐述。一、说教材《我们不乱扔》这一课共设计了四个活动主题:“我喜欢哪种情景”、“不只是为了干净”、“这样可不行”、“我能做到的……”,旨在告诉学生要自觉保持公共卫生,不能随便乱扔垃圾,并让学生知道把垃圾整理好带走是文明的做法,也是每个人的责任。学情分析小学生对学校的公共卫生和家居周围的公共卫生已有直接感受,且对公共场所的公共卫生已经直接接触过。但是,在日常生活中,有的人环境意识很差,随地乱吐痰,随手乱扔废弃物,导致有些地方的公共卫生很差。针对现实情况,教育小学生分清是非,从小培养保持公共卫生的好习惯显得十分必要。根据新课标和本课的教学内容与特点,结合学情,我设定了本课时的教学目标:1.知识与能力(1)知道应当保持公共卫生。(2)比较环境是否卫生的不同感受,说明应当保持公共卫生。2.情感与态度(1)喜欢干净的卫生环境,对破坏公共卫生的行为反感。(2)愿意保持公共卫生,做到“以保持公共卫生为荣,以破坏公共卫生为耻”。

  • 《望庐山瀑布》说课稿

    《望庐山瀑布》说课稿

    我将这节课设计成在去旅游地的车上导游引导游客做竞赛活动的过程。将教学内容与活动相机结合,让学生在活动中学习本课内容。开展的活动有:谈论图片、我会读、书法比赛、欣赏歌曲、朗诵比赛、有奖答题、古诗文比赛等。

  • 《狼牙山五壮士》说课稿

    《狼牙山五壮士》说课稿

    说教学目标1.知识目标:了解狼牙山五壮士英勇战斗,坚贞不屈,壮烈牺牲的英雄事迹。2.能力目标:理解能力、朗读体会能力的培养。3.德育目标;学习他们爱护群众,英勇杀敌,为了祖国和人民的利益勇于献身的崇高精神。三、说教学重难点:1.理解描写五壮士痛击敌人和英勇跳崖的动作、神态的语句,体会他们的思想感情和伟大精神。2.领悟课文写人记事的方法,提高表达能力。四、说教法采用自主、合作、探究的教学方法,充分引导学生提出问题,分析问题,解决问题,使学生读而思,思而疑,在主动参与探究过程中,培养学生自主阅读、自主感悟、自主发展的综合语文素养。

  • 我爱家乡山和水  说课稿

    我爱家乡山和水 说课稿

    尊敬的各位评委、各位老师:大家早上好!今天很荣幸和大家一起分享我的说课,我是 号选手张常葵,我说课的课题是《我爱家乡山和水》。下面我将从教材分析、学情分析、教学目标、教学方法、教学准备、教学过程及板书设计七个方面进行说课.一、说教材《我爱家乡山和水》是义务教育教科书人教版小学《品德与生活》二年级下册第一单元的第一主题。本单元的学习内容以家乡的地理景观和人文景观为背景,让学生通过观察、调查、搜集资料等方式来了解、赞美家乡的风景名胜、自然资源和文化生活,从而激发学生热爱家乡的感情和乐于为家乡做贡献的社会责任感。本课以家乡为轴心展示了不同地域(城市、乡村)的自然景观,让学生在感受家乡的山美、水美、物美的同时,进一步了解家乡的人文景观,如家乡美丽动人的传说、家乡的舞蹈、家乡的戏曲、家乡的名人故事。针对我们农村小学学生特点和学习习惯我将“让学生运用观察、访问、调查资料等各种收集资料的方式,了解家乡的故事和家乡的文化生活。”确定为本课的教学重点。

  • 人教版高中政治必修4人的认识从何而来说课稿(二)

    人教版高中政治必修4人的认识从何而来说课稿(二)

    今天我说课的题目是《生活与哲学4(必修)》的第二单元第六课第一框题——《人的认识从何而来》下面我将从教材,教法,学法,教学过程,教学反思五个方面来说一说我对本课的认识和教学设想。一、说教材我将从该框题在教材中的地位和作用,教学目标,教学重难点三方面来阐述我对教材的认识。(一)首先是教材的地位和作用;本框题重点论述马克思主义哲学认识论中实践与认识的关系。实践的观点是马克思主义首要和基本的观点,理解实践与认识的关系是把握哲学智慧不可或缺的途径。学好本框题不仅有利于学生从宏观上把握教材各课的联系,而且有利于帮助学生理解马克思主义哲学的本质特征。(二)教学目标是确定教学重点,进行教学设计的基础。依据新课程标准,我确定本课的教学目标有以下三方面:知识与技能:1、识记实践的含义、实践的构成要素、实践的特点。

  • 人教版高中政治必修4世界是永恒发展的说课稿(二)

    人教版高中政治必修4世界是永恒发展的说课稿(二)

    四、说学法哲学知识是比较抽象的,大多数学生都觉得哲学的内容很难把握,因此,针对学生的实际情况,在教学中必须发挥学生学习的主动性。通过观察、教师的引导及讨论来加深理解;通过练习来巩固所学知识。1.观察法:引导学生观察生活中的现象,加深理解发展的普遍性和发展的实质。2.探究法:让学生在讨论中体会发展的永恒性,知道用发展的观点看问题。3.练习法:“温故而知新”,学以致用,及时给一些习题让学生练习,让他们更能把握教材内容。五、说教学过程:[导入新课]引用一个历史故事来导入新课。(利用多媒体课件展示)[讲授新课]第一目:发展的普遍性①、自然界是发展的。(展示人的进化过程的图片和青蛙成长过程的图片,结合教材的例子来说明自然界是发展的)

  • 北师大版小学数学二年级下册《十年的变化》说课稿

    北师大版小学数学二年级下册《十年的变化》说课稿

    (1)思考并回答:对比同一个动物园两张照片,你发现了什么?为什么会有这么大的变化呢?(2)提出数学问题。2.自主探究,合作交流。(1)学生独立计算。(2)四人小组内交流算法。(3)全班汇报。学生可能出现以下几种计算方法:口算数线在计数器上拨珠计算。尝试列竖式的方法计算。(小老师板书,讲解)4.小狮子先知道用竖式计算三位数加法时要注意哪些方面的问题,你愿意告诉它吗?5..师:今天我们学习的就是三位数加法的计算方法。(补充课题)6..趣味练习,评选动物园环保之家(板演)(三)联系实际,巩固应用这一环节设计了“帮森林医生啄木鸟找对错”,“比一比谁做得又对又快”两个环节,目的是为了对今天学习的连续进位的加法进行巩固练习。(四)全课总结,畅谈收获

  • 人教版新课标高中地理必修2第二章第一节城市内部空间结构教案

    人教版新课标高中地理必修2第二章第一节城市内部空间结构教案

    为城市居民提供休养生息的场所,是城市最基本的功能区.城市中最为广泛的土地利用方式就是住宅用地.一般住宅区占据城市空间的40%—60%。(阅读图2.3)请同学讲解高级住宅区与低级住宅区的差别(学生答)(教师总结)(教师讲解)另外还有行政区、文化区等。而在中小城市,这些部门占地面积很小,或者布局分散,形成不了相应的功能 区。(教师提问)我们把城市功能区分了好几种,比如说住宅区,是不是土地都是被居住地占据呢?是不是就没有其他的功能了呢?(学生回答)不是(教师总结)不是的。我们说的住宅区只是在占地面积上,它是占绝大多数,但还是有土地是被其它功能占据的,比如说住宅区里的商店、绿化等也要占据一定的土地, 只是占的比例比较小而已。下面请看书上的活动题。

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

上一页123...147148149150151152153154155156157158下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!