2.明确顺序,整合信息(1)根据文章描写的大雁归来的旅程,可以看出本文是按什么说明顺序来写的?提示:抓住时间词、空间词、事物的发展变化的语句来理清结构,判断说明顺序。预设 本文大致是按时间顺序来写的。(2)大雁的行为是如此丰富,作者的观察是这样细致,请同学们分别按不同角度把找到的有关大雁行为的信息分类,看看能发现什么。自读任务二将找到的有关大雁行为的信息,按旅程远近、栖息地、组队、觅食、“集会”与鸣叫等进行分类整理。整理后,你发现了什么?(小组任选一个方面,分类整理,全班交流)预设 示例:旅程远近——直线飞行200英里——坚强、守信;栖息地——沼泽地、池塘边——充满灵性;组队、觅食、“集会”与鸣叫等——具有团结精神,互相关爱。【设计意图】本环节学生自主阅读,获取信息,把握文章写作的顺序;然后整合归纳信息,进而激发学生探讨大雁的兴趣,为后面深入阅读做铺垫。
【设计意图】学习事理说明文,要让学生在自主归纳的过程中,初步感知事理说明文说明“事理”这一基本特点,把握事理说明文和事物说明文的不同之处。引导学生通过学习课文,对科学方法产生自己的体会,并运用到自己的思考中。四、总结存储1.教师小结本文是一篇事理说明文,作者把一门科学——物候学介绍得浅显易懂,饶有趣味。全文采用逻辑顺序说明,思路清晰明了:描述物候现象——做出科学解释——追究因果关系——阐述研究意义。这种从现象到本质的认识方法和行文思路值得我们学习。本文语言严谨而生动,兼具说明的科学性和生动性,是一篇极有价值的科普文,是科学家竺可桢科学精神和科学思想的具体体现。文章启发我们:科学距离我们并不遥远,就在我们的身边,而想要探索它,就要有科学精神,扩大科学知识储备,掌握科学方法,勇于探索科学奥秘。
二、为什么要学习?(插入学习歌)有一首歌这样唱:中国有一句话,活到老,学到老,该学的真不少,书里书外都重要。(多媒体)古人荀子有言:不积跬步,无以至千里;不积小流,无以成江海。伟人毛泽东说:一天不学习,赶不上刘少奇今人说终身学习,学习能增进智慧,使人睿智。人生无坦途,跋涉多风雨,畏惧时,智慧是一柄利剑,助你披荆斩棘,笑傲人生;迷茫时,智慧是一盏明灯,为你点亮心灵,坚定方向;疲乏时,智慧是一弯山泉,让你洗去尘埃,净化心灵。
五、活动背景:健康的心灵是我们幸福的源泉,只有接纳自己、喜欢自己、充满自信才有健康的心灵。然而,随着社会的发展,中学生中存在着许多的心理健康问题。为更好地对中学生进行心理健康教育、更好地优化学生的心理素质,促进学生的心理健康成长。更好地引导同学们积极关注自我发展,自觉维护和提升心理健康水平,让同学们的心理朝着阳光健康的方向发展,我们特开展以“心灵护航,快乐成长”为主题的中学生心理健康教育主题班会
2、培养幼儿喜欢参加音乐游戏的兴趣。 活动准备: 猫妈妈头饰1个、小猫头饰29个、磁带、三用机; 活动前幼儿已学会演唱歌曲《找小猫》。 活动过程: 一、律动《小猫小猫》进场。 师:今天天气真好,猫妈妈要带猫宝宝们去秋游,我们出发吧! 二、复习歌曲《找小猫》,引导幼儿创编动作。 1、播放歌曲第一段,请幼儿边唱边自由地创编动作。 2、师总结幼儿创编的动作,并请幼儿能跟随音乐表演。
2、懂得用不正确方法玩滑梯易造成伤害; 3、初步养成一定的安全意识。 活动准备: 1、小兔、小狗胸饰若干,照相机。 2、编排情境表演(大班的哥哥姐姐)。 活动过程: 1、导入活动,激发兴趣。 兔妈妈(老师扮):今天天气真好,小兔子们,妈妈带你们出去玩。看,那是谁?(小狗)他们在干什么?(滑滑梯) 2、观看情境表演,向幼儿介绍滑梯及其玩法。 (1)狗妈妈是怎样教小狗玩滑梯的?为什么要这样玩? (
我是中国人民的儿子。我深情地爱着我的祖国和人民。爱国主义是千百年来巩固与发展起来的对自己的祖国的一种最深厚的感情。 列宁为什么我的眼里常含着泪水?因为我对这土地爱得深沉! 艾青【第四环节:演唱爱国歌曲】主持人:下面请几位同学为我们展示自己的精彩才艺。演唱一首爱国主题歌曲,让我们在激荡人心的歌声中结束我们这次的主题班会。演唱曲目《爱我中华》主持人:在美妙的歌声中,本次主题班会到此结束。活动小结:通过这次主题班会,激发了学生的爱国情感和民族自豪感,也更加让同学们体会到祖国的发展与强大与同学们是息息相关的,使同学们体会到了肩上所承担的重任让他们明白为什么爱国以及作为学生该如何爱国,将主题班会内容内化到他们的思想中,落实到他们的行动中去。
(2)如何开展岸上急救教师详细讲解急救步骤:第一步:当溺水者被救上岸后,应立即将其口腔打开,清除口腔中的分泌物及其他异物。如果溺水者牙关紧闭,要从其后面用两手的拇指由后向前顶住他的下颌关节,并用力向前推进。同时,两手的食指与中指向下扳颌骨,即可搬开他的牙关。第二步:控水。救护者一腿跪地,另一腿屈膝,将溺水者的腹部放到屈膝的大腿上,一手扶住他的头部,使他的嘴向下,另一手压他的背部,这样即可将其腹内水排出。第三步:如果溺水者昏迷,呼吸微弱或停止,要立即进行人工呼吸,通常采用口对口吹气的方法效果较好。若心跳停止还应立即配合胸部按压,进行心脏复苏。第四步:注意要在急救的同时,要迅速打急救电话,或拦车送医院。学生按照教师的讲解方法,全班学生每2人分成一个小组,进行模拟演示,1人扮演溺水者,1人扮演救护者。每个小组轮流进行,其他同学细心观察,最后做出总结,指出优点和缺点。
[师]同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?[生]我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.[师]这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.
方法总结:判断轴对称的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:两个图形成轴对称如图所示,哪一组的右边图形与左边图形成轴对称?解析:根据轴对称的意义,经过翻折,看两个图形能否完全重合,若能重合,则两个图形成轴对称.解:(4)(5)(6).方法总结:动手操作或结合轴对称的概念展开想象,在脑海中尝试完成一个动态的折叠过程,从而得到结论.三、板书设计1.轴对称图形的定义2.对称轴3.两个图形成轴对称这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养
第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明. 活动目的:回顾上节知识,为本节课的展开打好基础.教学效果:学生举手发言,提问个别学生.第二环节:探索命题的结构活动内容:① 探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(4)如果一个四边的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.② 总结命题的结构特征(1)上述命题都是“如果……,那么……”的形式.(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论.
一、情境导入神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02.666秒发射,由长征二号F改进型运载火箭(遥十)“神箭”成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平.6月13日与天宫一号进行对接.6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:定义 下列语句属于定义的是()A.明天是晴天B.长方形的四个角都是直角C.等角的补角相等D.平行四边形是两组对边分别平行的四边形解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D.方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.
1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.重点:通过例题的讲解和课堂练习对所学知识进行复习巩固难点:本章知识的综合性应用。【归纳总结】(1) 定义: 三条边都相等 的三角形是等边三角形。(2)性质:①三个内角都等于60度,三条边都相等②具有等腰三角形的一切性质。
答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。