A:我觉得我们经常得不到流动红旗,就是因为我们不团结。A(抢答):对!如果我们能做到每天互相监督不丢垃圾,我们的卫生就不会扣那么多分了!······(四) 辅导员总结一个人的力量是很小的,大家只有团结一致,力量才是最大的。大家团结在一起,一起学习,一起活动,共同努力,才能把我们的班集体建设的更好。希望同学们能手拉手、心连心,为创建和谐美好的班集体贡献自己的力量。五、说效果少先队活动课已经结束了。从参加课本剧的学生身上,从原本矛盾不断,到最后能完整地演出,从观众们的反馈:团结起来才有最大的力量中,我知道了,孩子们懂得了团结;从那个向我埋怨胳膊很疼却在我问道为什么不放手的时候,不假思索地回答:放手就输了!的女生身上,我知道了,孩子们懂得了信任,没有人会放手;从“两人三足”的一二一二口号声中,我知道了,孩子们学会了配合;从最后的采访回答:我们如果能互相监督不扔垃圾,我们班的卫生就不会扣那么多分,我知道了,他们将会互相帮助。
主持人带领队员一起唱儿歌:让我们一起拍拍手,我爱少先队,我爱我的家。我用小巧手,装扮我的家,我是小主人,细心爱护她。辅导员讲话:少先队员们,少先队是我们共同的家,我们都是队的小主人,让我们动手动脑,团结友爱,互帮互助,用巧手装扮我们自己的家。活动课后,大家一起动手,与你的亲友团、高年级大哥哥大姐姐一起积极准备,完成任务。下节活动课,我们就来布置中队队角。活动延伸:一节活动课只有40分钟,容量有限。随着队员年龄的增长和年级的升高,可以不断增加和丰富中队角的内容,但要注意循序渐进,如,三年级可以布置争章园地;四年级可增加友谊角、出队报;五年级可增加信息角;六年级可设立英雄角,并整理中队日记等。
请你夸夸他(她)或夸夸自己:我为集体做过哪些好事?(从学习、纪律、劳动、礼仪方面考虑)自由发言.第三环节:扬长避短为集体以相声《与众不同》来引出虽然我们爱我们的班集体,但在实际生活中还存在着不尽人意的现象、接着讨论班级的不足之处及其原因,让学生真切的认识到自身存在的小毛病.1)有的同学很小气,为一点小事斤斤计较.2)下课有打闹现象,玩的花样层出不穷,玩心太重.3)有的同学上课听讲不够专心,抠手指、玩橡皮、弄尺子.主持人引导学生从勤奋学习、文明守纪、团结同学、养成习惯等方面分组讨论今后我们应该如何热爱我们的班集体?并谈谈每个学生应怎样扬长避短,班级建设中发挥积极的作用让学生明确个人的步调要和集体保持一致,集体的利益大于一切.
(2)让学生展示收集到的几件陶瓷,如装酒的陶瓷瓶,这样让学生更加直观的接触安陶。(3)幻灯播放陶瓷的制作过程,让学生对陶瓷工艺的流程有更深的了解。第二乐章结束后对各小组进行评比加分(用时20分钟),我引导学生说说这么好的学校和家乡有谁不爱?那么我们应该怎样爱自己的学校和家乡呢?接下来进入第三乐章 爱家乡 分为2个环节 第1环节说说议议(说说你对家乡的发展有哪些合理的建议?我们应该怎么做?) 小组讨论后解答(这一环节的设计重在培养队员对家乡的责任感和创新能力,可以说是本次队会主题的升华。为了调动队员的积极性,鼓励队员大胆说出自己的想法,这时,老师以一个与队员平等的活动参与者的身份与队员一起参加讨论,共同为家乡的建设献计献策。)通过交流队员们知道原来爱护环境、讲究公德、热爱劳动、为家乡争光等,这些一点一滴的小事都是爱家乡的表现呀。这样队员们明确了爱家乡的具体行动。
(2)由来:《黄帝内经》是我国古典医籍中现存最早的一部医学,在整个中医的发展过程起着重要的作用。该书中阐述的理论,一直以来指导着整个中医学术的发展,是学习中医不可缺少的一部经典读物,也是现代中医院学生学习中医时必读的医书。顾名思义,“内经”是讲内科方面的疾病,据《隋书.艺文志》记载,除了有《黄帝内经》外,还有一本《黄帝外经》。这两本书是姊妹篇。看来,《黄帝内经》是针对《黄帝外经》说的。2、《伤寒杂病论》:集大成的中医专著、“万世宝典”(1)作者:东汉张仲景(2)内容:全书分为“伤寒”和“杂病”两大部分,(3)地位:创造性地提出辩证施治的方法,奠定了后世中医临床学的理论基础,被后世医家誉为“万世宝典”。3、《本草纲目》:“东方药物巨典”(1)作者:明朝李时珍(2)内容:记录各类药物1892种、药方一万多个,还绘制了一千多幅药物形态图。(3)地位:这部重要的中药学著作,是对16世纪以前中药学的系统总结,被称为“东方药物宝典”。
《音乐课程标准》中指出音乐学习的各个方面都涉及到听觉的作用,审美主体对于音乐的各种听觉感受能力,是审美能力的基础。因此先唱歌、后识谱与先识谱、后唱歌在教学目的上并不矛盾。而在传统的教学方式是先识谱、后唱歌,通常情况下,针对有一定识谱能力的学生,使用这种教学方式,可起到良好的效果。但是我却发现,其实很多同学对简谱并没有了解,如果采取先识谱后唱歌的方式进行学习,不但学生没有对该曲目起到兴趣,也把课堂前15分钟的宝贵时间也白白浪费掉。对此我作出以下的改善,在教唱新歌前我首先让学生聆听,以听领先。并让学生和着音乐做简单的律动,使学生对音乐有了听觉上的印象,为下一步学好歌曲作好铺垫。然后让学生欣赏歌曲、感受音乐,从而激发起学生学习音乐的兴趣。再通过让学生唱歌,在不知不觉中解决了歌谱中的难点,使学生在识谱时降低难度,让学生感觉识谱并不太难,从而增强其自信心,加深对音乐的热爱。
一、说教材(一)教材分析本课是最新部编版《道德与法治》六年级下册第三单元第6课。本单元主要从古代文明的主题出发,引导学生了解人类的文明史是由世界人民共同创造的。中华民族的悠久历史和灿烂文化的发祥地是黄河流域和长江流域,在搜集资料及交流中感悟古代劳动者的智慧。同时,在了解世界文化遗产的同时学会珍惜领悟和传承古代文明遗迹,为中华民族灿烂文化感到自豪。了解各种不同的生活环境造成了不同的自然景观,尊重不同的文化并宣传中国文化。(二)教学目标1.懂得世界各国人民共同创造了人类文明,保护文明世界的文化遗产,形成开放的国际视野。2.初步了解古代早期文明发祥地;知道古代中国是世界文明发祥地之一,明白古代中国对人类文明的贡献,珍视祖国的历史与文化。3.初步掌握收集、整理和运用信息的能力。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 7.1 平面向量的概念及线性运算 *创设情境 兴趣导入 如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗? 图7-1 介绍 播放 课件 引导 分析 了解 观看 课件 思考 自我 分析 从实例出发使学生自然的走向知识点 0 3*动脑思考 探索新知 【新知识】 在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我们经常用箭头来表示方向,带有方向的线段叫做有向线段.通常使用有向线段来表示向量.线段箭头的指向表示向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作. 图7-2 平面内的有向线段表示的向量称为平面向量. 向量的大小叫做向量的模.向量a, 的模依次记作,. 模为零的向量叫做零向量.记作0,零向量的方向是不确定的. 模为1的向量叫做单位向量. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 带领 学生 分析 引导 式启 发学 生得 出结 果 10
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考*动脑思考 探索新知 【新知识】 当两条直线、的斜率都存在且都不为0时(如图8-11(1)),如果直线平行于直线,那么这两条直线与x轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x轴相交的同位角相等,故两直线平行. 当直线、的斜率都是0时(如图8-11(2)),两条直线都与x轴平行,所以//. 当两条直线、的斜率都不存在时(如图8-11(3)),直线与直线都与x轴垂直,所以直线// 直线. 显然,当直线、的斜率都存在但不相等或一条直线的斜率存在而另一条直线的斜率不存在时,两条直线相交. 由上面的讨论知,当直线、的斜率都存在时,设,,则 两个方程的系数关系两条直线的位置关系相交平行重合 当两条直线的斜率都存在时,就可以利用两条直线的斜率及直线在y轴上的截距,来判断两直线的位置关系. 判断两条直线平行的一般步骤是: (1) 判断两条直线的斜率是否存在,若都不存在,则平行;若只有一个不存在,则相交. (2) 若两条直线的斜率都存在,将它们都化成斜截式方程,若斜率不相等,则相交; (3) 若斜率相等,比较两条直线的纵截距,相等则重合,不相等则平行. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 思考 理解 带领 学生 分析 引导 式启 发学 生得 出结 果
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.2 直线与直线、直线与平面、平面与平面平行的判定与性质 *创设情境 兴趣导入 观察图9?13所示的正方体,可以发现:棱与所在的直线,既不相交又不平行,它们不同在任何一个平面内. 图9?13 观察教室中的物体,你能否抽象出这种位置关系的两条直线? 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 2*动脑思考 探索新知 在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线与直线就是两条异面直线. 这样,空间两条直线就有三种位置关系:平行、相交、异面. 将两支铅笔平放到桌面上(如图9?14),抬起一支铅笔的一端(如D端),发现此时两支铅笔所在的直线异面. 桌子 B A C D 两支铅笔 图9 ?14(请画出实物图) 受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 ?15). (1) (2) 图9?15 利用铅笔和书本,演示图9?15(2)的异面直线位置关系. 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 5
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.3 直线与直线、直线与平面、平面与平面所成的角 *创设情境 兴趣导入 在图9?30所示的长方体中,直线和直线是异面直线,度量和,发现它们是相等的. 如果在直线上任选一点P,过点P分别作与直线和直线平行的直线,那么它们所成的角是否与相等? 图9?30 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 5*动脑思考 探索新知 我们知道,两条相交直线的夹角是这两条直线相交所成的最小的正角. 经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角. 如图9?31(1)所示,∥、∥,则与的夹角就是异面直线与所成的角.为了简便,经常取一条直线与过另一条直线的平面的交点作为点(如图9?31(2)) (1) 图9-31(2) 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 12*巩固知识 典型例题 例1 如图9?32所示的长方体中,,求下列异面直线所成的角的度数: (1) 与; (2) 与 . 解 (1)因为 ∥,所以为异面直线与所成的角.即所求角为. (2)因为∥,所以为异面直线与所成的角. 在直角△中 ,, 所以 , 即所求的角为. 说明 强调 引领 讲解 说明 观察 思考 主动 求解 通过例题进一步领会 17
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
2.送信。实物投影仪演示反馈。(1)方法说明。你是怎么想的?(2)错误纠正。分层校对:做完的先互相批改,然后集体先校对丁当组题,再校对一休组题。重点讲评一休组题目。六、总结今天你有哪些收获?(1)退位减法要注意什么?不要忘记退位。(2)退位减法的方法。为学生提供学习材料,让学生通过活动联系生活实际学习新知,让学生感受到数学源于生活,用于生活;采用分层教学,整个学习过程都是学生在小组中合作研究、探索中完成的;然后通过多种形式的练习加以巩固;注重学习过程的开放;通过小组合作,培养学生善于发表自己的观点,会倾听同学的意见的能力。同时也培养学生学会提出问题、解决问题的能力。
四、课堂小结今天我们一起研究了什么问题?板书课题:求一个数比另一个数多几的应用题解答这样的问题,应该怎样进行分析?在老师的提问下,学生回忆分析思路。最后,小结上课时男女学生小旗的情况,得出数目后问:你能根据今天学习的内容提出问题并列式计算吗?教学反思:求一个数比另一个数多几的应用题,本节课属于计算教学。传统的计算教学往往只注重算理、单一的算法及技能训练,比较枯燥。依据新的数学课程标准,在本节课的教学设计上,创设生动具体的教学情境,使学生在愉悦的情景中学习数学知识。鼓励学生独立思考、自主探索和合作交流。尊重学生的个体差异,满足多样化的学习需求。 在课堂过程中,还有小部分学生不能充分地展开自己的思维,得到有效的学习效果,让所有的学生基本都学会如何去展现自己的有效的学习方式,这是我的教学目标。
[设计意图:巩固减法的意义,培养学生初步的思维能力。](2)组织学生自己先算一算,教师巡视,捕捉学生学习信息,纠正不良学习习惯。[设计意图:通过巡视,及时捕捉学生的学习信息,发现问题及时解决;把培养学生良好的计算习惯、审题习惯及检查习惯落到实处。](3)组织学生全班交流计算方法。组织学生在全班交流解决计算“32-2=”的方法,引导学生理解“32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”。如果学生用其他的方法来计算,只要正确,也要肯定。[设计意图:同前面一样,巩固数的组成,训练每一个学生“述说整十数加一位数相应减法的计算过程”,突破难点。]3.加减法对比组织学生比较“30+2=32”和“32-2=30”,并说一说有什么发现,使学生认识到“3个十和2个一组成32,所以30加2等于32;反过来,32是由3个十和2个一组成,从32里去掉2,就剩3个十,所以32减2等于30”[设计意图:强化加减法意义的联系,培养学生初步的思维能力。]
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)