提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

幼儿园中班数学教案:小树的成长相册

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 统编版三年级语文上胡萝卜先生的长胡子教案

    统编版三年级语文上胡萝卜先生的长胡子教案

    1.胡萝卜先生的胡子可真长啊!胡萝卜先生继续走着,接下来会发生什么有趣的事情呢?(学生发挥想象,预测接下来的故事情节。) 2.自读课文第4-8自然段,看看与你们自己的预测一样不一样吧!学生自己读故事,发现自己的预测和文本内容不一样时及时修正自己的想法。(1)出示关键句:线实在太短了,他的风筝只能飞过屋顶。根据课文内容,预测接下来的故事发展。(2)出示关键句:鸟太太正在找绳子晾小鸟的尿布。根据插图中鸟太太遇见胡萝卜先生惊喜的神态,预测接下来的故事发展。 3.文章写完了吗?为什么?(结尾的省略号就告诉我们这个故事还没有结束。) 既然没有结束,我们就来续编故事吧!可以结合上面的男孩的语言、动作续编故事,也可以有自己新奇的想法。大家之前预测的故事发展只要合乎情理也可以继续预测。

  • 高教版中职数学基础模块下册:9.2《直线与直线、直线与平面、平面与平面平行的判定》

    高教版中职数学基础模块下册:9.2《直线与直线、直线与平面、平面与平面平行的判定》

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 9.2 直线与直线、直线与平面、平面与平面平行的判定与性质 *创设情境 兴趣导入 观察图9?13所示的正方体,可以发现:棱与所在的直线,既不相交又不平行,它们不同在任何一个平面内. 图9?13 观察教室中的物体,你能否抽象出这种位置关系的两条直线? 介绍 质疑 引导 分析 了解 思考 启发 学生思考 0 2*动脑思考 探索新知 在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线与直线就是两条异面直线. 这样,空间两条直线就有三种位置关系:平行、相交、异面. 将两支铅笔平放到桌面上(如图9?14),抬起一支铅笔的一端(如D端),发现此时两支铅笔所在的直线异面. 桌子 B A C D 两支铅笔 图9 ?14(请画出实物图) 受实验的启发,我们可以利用平面做衬托,画出表示两条异面直线的图形(如图9 ?15). (1) (2) 图9?15 利用铅笔和书本,演示图9?15(2)的异面直线位置关系. 讲解 说明 引领 分析 仔细 分析 关键 语句 思考 理解 记忆 带领 学生 分析 5

  • 高中校长国旗下的讲话稿

    高中校长国旗下的讲话稿

    同学们:逢年过节,亲朋好友们总要祝福我心想事成。大多数人都认为这只是一个美好的祝愿,然而在我看来,这却是一个真理。因为,这并非无稽之谈。心想了才能够事成,前者是后者的必要条件,好比一座楼房如果事成是它的高度,那么心想便是它的地基,楼房的高度取决于心想的质量。我曾经看过这样一个故事,说有一位学生整天忙忙碌碌,读书做作业几乎达到废寝忘食,但一直不见任何成果。学生自己也很奇怪,于是请教一位德高望重的大师。看到大师正在悠闲的闭目养神,便问大师成功的奥秘到底是什么。大师开口问道:你每天在干什么?学生回答:我在学习。大师又问道除了学习还干什么?学生回答:还是学习。大师沉思片刻:那你什么时候思考呢?学生点了点头,似乎明白了其中的道理。

  • 【高教版】中职数学拓展模块:1.1《两角和与差的正弦公式与余弦公式》教案设计

    【高教版】中职数学拓展模块:1.1《两角和与差的正弦公式与余弦公式》教案设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的正弦公式与余弦公式. *创设情境 兴趣导入 问题 两角和的余弦公式内容是什么? 两角和的余弦公式内容是什么? 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 5*动脑思考 探索新知 由同角三角函数关系,知 , 当时,得到 (1.5) 利用诱导公式可以得到 (1.6) 注意 在两角和与差的正切公式中,的取值应使式子的左右两端都有意义. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 15*巩固知识 典型例题 例7求的值, 分析 可以将75°角看作30°角与45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)题可以逆用公式(1.3);(2)题可以利用进行转换. 解(1) ; (2) . 【小提示】 例4(2)中,将1写成,从而使得三角式可以应用公式.要注意应用这种变形方法来解决问题. 引领 讲解 说明 引领 分析 说明 启发 引导 启发 分析 观察 思考 主动 求解 观察 思考 理解 口答 注意 观察 学生 是否 理解 知识 点 学生 自我 发现 归纳 25

  • 人教版高中政治必修1第十课科学发展观和小康社会的经济建设教案

    人教版高中政治必修1第十课科学发展观和小康社会的经济建设教案

    一、教材分析第四单元“发展社会主义市场经济”旨在培养社会主义的建设者,高中生是未来社会主义现代化建设的主力军,是将来参与市场经济活动的主要角色,承担着全面建设小康社会的重任,本课的逻辑分为两目:第一目,从“总体小康到全面小康”。这一部分的逻辑结构如下:首先讴歌我国人民的生活水平达到总体小康这一伟大成就,然后从微观和宏观两个方面介绍总体小康的成就。同时指出,我国现在达到的小康是低水平、不全面、发展不平衡的小康。第二目“经济建设的新要求”。这一目专门介绍全面建设小康社会的经济目标,也是学生要重点把握的内容。二、教学目标(一)知识目标(1)识记总体小康的建设成就在宏观和微观上的表现,全面建设小康社会的经济建设目标。(2)理解低水平、不全面、发展很不平衡的小康,以及小康社会建设进程是不平衡的发展过程。(3)运用所学知识,初步分析全面建设小康社会的意义。

  • 部编人教版四年级下册《海的女儿》说课稿

    部编人教版四年级下册《海的女儿》说课稿

    一、说教材《海底的女儿》是部编版小学四年级下册第八单元的最后一篇课文,是一篇略读课文。课文节选自《海的女儿》的结尾部分,通过介绍小人鱼亲自参加王子的婚礼,忍受身体和精神的苦痛,一步步变成泡沫,走向死亡的故事。这是一个凄美的爱情故事。 二、说目标教学目标1.认识本课“港、宴”等13个生字,积累生字组成的新词。2.自由阅读课文,了解故事大意,体会人鱼公主的美好心灵。3.激励学生从小为人大度,常抱有处处为别人着想的思想。教学重点:体会美人鱼宁可牺牲自己也不伤害王子的品质。教学难点:了解故事大意,体会海公主的美好心灵。

  • 初中化学人教版九年级上册《实验活动1氧气的实验室制取与性质》教案

    初中化学人教版九年级上册《实验活动1氧气的实验室制取与性质》教案

    【学习目标】1.知识与技能:知道氧气的制取及检验方法,复习巩固氧气的相关性质。2.过程与方法:通过“探究能使带火星木条复燃所需氧气的最低体积分数”的探究性学习,学习科学探究的基本方法。3.情感态度与价值观:提高实验设计的能力和合作意识,复习巩固相关的基本操作,培养学习化学的兴趣。【学习重点】氧气的实验室制取操作步骤和性质检验。【学习难点】实验操作过程中的注意事项。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习引入:实验室用高锰酸钾制取氧气的反应原理是什么?操作步骤有哪些?2.明确学习目标,由学生对学习目标进行解读。合作探究 生成能力阅读课本P45~P46的内容。提出问题:实验室加热高锰酸钾制取氧气的实验中,使用了哪些仪器?哪部分是气体发生装置?哪部分是气体收集装置?为什么可用排水法收集气体?讨论交流:结合化学实验基本操作和氧气的性质讨论归纳。

  • 部编人教版四年级下册《 巨人的花园》说课稿

    部编人教版四年级下册《 巨人的花园》说课稿

    一、说教材《巨人的花园》是部编版小学语文四年级下册第八单元的第二篇精读课文,本组课文的专题是童话故事,要求学生在读课文时体会童话的语言美、意境美、思想美。《巨人的花园》是英国作家王尔德写的一篇意蕴深刻的童话,讲述的是一个巨人看到孩子们在自己的花园里玩耍,很生气,便在花园的周围筑起了围墙,将孩子们拒之门外。从此,花园里花不开,鸟不语,一片荒凉。后来,巨人醒悟了,拆除了围墙,与孩子们共同生活,感到无比的幸福。从这篇童话中我们可以体会到,能和大家一起分享的快乐才是真正的快乐。二、说教学目标语文课程标准强调,课程目标要根据知识和能力、过程和方法、情感态度和价值观三个维度设计,基于以上对教材的理解,结合四年级学生特点,设定教学目标如下:

  • 部编人教版五年级下册《祖父的园子》说课稿(二)

    部编人教版五年级下册《祖父的园子》说课稿(二)

    一、设计理念:祖父的园子是一幅明丽的漂亮的富有通话色彩的画。画里有树、有花、有菜、有庄稼、有蜻蜓、有蝴蝶、有蚂蚱、有小鸟、有风、有雨,还有太阳的光芒,有云朵的影子,这是作者童年的乐园。这里的一切都充满了生命的气息,一切都是自由的,童年的作者也是自由的,这自由是她童年的快乐的源泉。本文重点写了作者在园中自由自在的童年生活。教学时,让学生自主、合作、探究的方式,入情入境地读书,感受作者童年生活的自由和快乐,体会作者对童年生活的留恋,领悟作者的写法,并积累语言。二、教学目标:1. 认识本课生字词。2.有感情地朗读课文,体会自由、快乐、幸福的童年生活。3.理解课文内容,体会作者的心情。感悟作者的表达方式。

  • 部编人教版五年级上册《 圆明园的毁灭》说课稿

    部编人教版五年级上册《 圆明园的毁灭》说课稿

    【教材分析】《圆明园的毁灭》这篇课文以浅近的语言,描述了圆明园当年的繁华,讲述了圆明园毁灭的过程,作者想让学生感受到的除了因祖国过去的贫病饥弱而忍受的耻辱之外以及由此而生的愤怒之外,更重要的,是想激发学生的爱国情感以及增强振兴中华的责任感和使命感。 学生在通过第一课时的学习,基本掌握本课的生字新词,对文章进行了初步解读,对这段历史有一定了解,但对爱和恨交织的情感把握上不是很准,尤其是把这份情感升华为民族的责任感更需要老师的引导。本节课我将引导学生透过语言文字充分挖掘“爱恨变化”的情感主线,不断激发学生的情感,带着他们在爱的情感中走进圆明园,在由恨而生的使命感中走出圆明园。根据本课的学习内容和学生的认知基础,我将从知识与技能,过程与方法,情感态度与价值观,三个维度方面确定本课的教学目标:

  • 部编人教版五年级下册《祖父的园子》说课稿(一)

    部编人教版五年级下册《祖父的园子》说课稿(一)

    一、说教材:《祖父的园子》是部编本人教版五年级下册第一单元以“多彩的童年生活”为主题的一篇课文,节选自萧红的回忆性长篇小说《呼兰河传》。主要写了祖父园子中各种美好的景物,以及作者在园中自由自在的童年生活。言语新鲜自然、率真稚拙。充满自由想象的表达方式,排比、拟人、比喻等修辞手法的巧妙运用,使文章犹如一幅清新和谐、富有童话色彩的画。表现了祖父的园子是“我”童年快乐、自由的家园,表达了对童年生活的眷恋和对亲人的回忆。文章文字虽然浅显,但意境很美。是一篇非常适合对学生进行想象训练、朗读训练、言语训练的范本。“祖父的园子”是一幅色彩明丽富有童话色彩的画,这里是“我”童年生活的地方,它给我带来了无穷的乐趣。不只是园子,还有慈爱的祖父,他给了“我”心灵的自由,放飞了“我”的心灵,舒展了“我”的人生。

  • 人音版小学音乐二年级上册小鸡的一家说课稿

    人音版小学音乐二年级上册小鸡的一家说课稿

    5、请小朋友回去后把学会的儿歌念给爸爸妈妈听,请他们猜猜,儿歌里藏着多少数字?小鸡一家一共有几只小鸡?活动总结及反思1、儿歌的内容和形式比较吸引幼儿。整个活动的设计由易到难,层层递进,提问体现层次性。幼儿通过看、听、表演等形式,表现出对学习数字歌谣的浓厚兴趣。儿歌的主题贴近幼儿的生活,有利于幼儿理解、分享交流、想象扩散。在目标、内容上能与计算、德育、生活相结合,体现整合观。2、儿歌中小鸡一家还隐藏着数字"10",可以让幼儿回家和家长一起把数字"10"编入儿歌。这样使儿歌更有完整性,也能让家长参与,体现家园互动。3、幼儿在念儿歌时,有些生疏,教师可以提醒幼儿想着数字顺序、记着数字念儿歌。让孩子学会念数字歌谣的方法4、活动的过程中幼儿可能容易走神,如何抓住幼儿的注意力,让整堂课可以顺利的完成成为考验教师的难点。

  • 人音版小学音乐四年级下册小纸船的梦说课稿

    人音版小学音乐四年级下册小纸船的梦说课稿

    第一环节“情景导入”,现代信息技术在这一环节体现非常充分,让学生欣赏一些关于船的图片第二环节“反复感受,轻松学歌”,音乐是听觉的艺术,在这一环节中,我首先让学生通过反复聆听来感受这首歌曲,接着采用模唱法和听唱法相结合让学生在轻松愉快的氛围中学会了本课歌曲。第三环节“表现歌曲”这是本课中最出彩的一个环节。在前面的几个环节中层层铺垫,为学生积累了很多艺术实践和经验,这时让学生拿着自己的船进行音乐表现,学生已经没有困难,而且能够表演得很到位,将整堂课推向高潮。最后的拓展部分引发学生对祖国热爱,激励他们努力学习而使学生喜欢音乐,感受音乐带给我们的美以及对未来的憧憬和理想。让他们在以后的学习生活中能奋发向上!

  • 人音版小学音乐五年级上册故乡的小路说课稿

    人音版小学音乐五年级上册故乡的小路说课稿

    另外,歌曲中的“路”、“福”、“诉”、“咐”、“住”每个字发音要准确,要竖起来,并送到共鸣腔体里,唱到位置上,使每个音都圆润,明亮。4、在处理歌曲情感时,我首先采用了朗读法,学生更能够深切体会音乐的情绪。其次我还采用了画旋律线的方法,让学生能够更直观的感受到歌曲连绵流畅旋律,体验歌曲的情绪是随着音高起伏而变化的。第五环节:拓展延伸这个环节主要是情感的升华,教师设计播放歌曲《月之故乡》以此唤起学生思乡情绪,进行艺术熏陶,感受音乐中的情与美,浅谈自己的感受。第六环节:结束语(小结)通过本课的学习我们学习了3/4拍和4/4拍,掌握了拍子本身的强弱关系。同时学习了变化音#4在歌曲中的演唱技巧。希望我们可以一共去感受作者的思乡之情,同时让我们寻找到另外一种表达情感的方式—歌唱。

上一页123...113114115116117118119120121122123124下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。