②癌症患者在治疗过程中,会有很大的身体损耗,而黄鳝有很好的滋补作用,适当吃一点黄鳝,既能够为患者补充营养,也能够提高患者的身体免疫力。 (来源于报纸)经过讨论交流,每一组一名同学自主发言,老师点拨,最后形成小结。看来源 要权威发布,不要道听途说看内容 要事实清晰,不要模糊遗漏看立场 要客观公允,不要情绪煽动看逻辑 要严谨准确,不要简单断言情感判断 理性判断 理性表达(四)活动三,重实践新课标提到,语文课程应引导学生在真实的语言运用情境中,通过自主的语言实践活动,积累经验,把握规律,培养能力。据此,我设计了以下贴近学生生活、可参与性强的活动。多媒体展示案例,仍然是先讨论交流,再自主发言,说出案例有哪些问题。这是某校园论坛上的一则寻物启示。
(2) 中国文人的悲秋情结。3.《荷塘月色》中,作者为什么要离开家来到荷塘散步?4. 思考:作者的心里为何“颇不宁静?”(教师补充:写作背景)5. 出门散步后,作者的心情发生变化了吗? 有怎样的变化?6.思考讨论:为什么作者说“我”与“地坛”间有着宿命般的缘分,二者有何相似之处?(阅读1-5段)7.思考:作者从他同病相怜的“朋友“身上理解了怎样的”意图“?三、课堂总结李白说:“天地者,万物之逆旅也。”人生,如同一场旅行,在人生的旅途中,时而高山,时而峡谷,时而坦途,时而歧路。我们或放歌,或悲哭,然而,大自然始终以其不变的姿势深情地看着我们,而我们,也应该学会在与自然的深情对望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁达夫,荷塘月色之于朱自清,地坛之于史铁生,他们从中或得到心灵的慰藉、精神的寄托,或得到生存的智慧与勇气,最终完成精神的超脱。
扬起自信的风帆各位老师,同学们:大家早上好!今天我演讲的题目是《扬起自信的风帆》。自信,是走向成功的伴侣,是战胜困难的利剑,是达向理想彼岸的舟楫。有了它,就迈出了成功的第一步,有了它,就走上了义无反顾的追求路。曾几何时,刘邦、项羽目睹秦始皇浩浩荡荡的出游队伍、富丽华美的车帐、八面凛凛的威风,随生雄心万丈的自信:“大丈夫当如此也”,“彼可取而代也”。于是,汉高祖立千秋帝王大业,楚霸王成万古悲壮英雄。诗人李白自信,他发也了“天生我才必有用,千金散心还复来”、“仰天大笑出门去,我辈岂是蓬蒿人”的浩叹,便有壮丽辉煌的诗章千古流传。巴尔扎克自信,放弃家人为他选定的职业,毅然走上创作道路,终有惊天动地的《人间喜剧》彪炳千秋。一代伟人毛泽东更自信,他高唱“自信人生二百年,会当击水三千里”、“数风流人物,还看今朝”,万水千山,披荆斩棘,铸造了共和国的辉煌,带来了亿万人民的幸福-------
当好“三个角色”,落实会议决定。当好工作落实的“推动者”。会后,联席会议成员单位及时向有关市级领导同志汇报会议研究的事项。市委办公室按会议要求督促跟进抓好落实,阶段性汇报工作推进情况。如,2022年第三季度联席会议提出,市委办公室、市委宣传部、市委政法委等单位要相互协调配合,共同做好重要紧急信息报送工作。会后,我们立即联合会商,研究健全全市重要紧急信息报送联动机制,并组织专题培训班,进一步提升重要紧急信息报送质效。当好工作安排的“调度员”。市委办公室认真研究、吸纳会上各单位提出的意见建议,按照会议部署的工作要求,对当前季度市委工作计划和活动预案进行优化调整,按照“月调度、周部署、日安排”方式高效调度,有序推动全市各项工作。
所属单位机关部门D组织ZT教育可以适当错后启动,拉开时间梯次,但也不能与上级单位间隔时间过长,最晚5月5日前要全面启动。需要强调的是,不管什么时间启动,具体到每个单位、部门,开展ZT教育的时间都不能少于5个月。无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。
当好“三个角色”,落实会议决定。当好工作落实的“推动者”。会后,联席会议成员单位及时向有关市级领导同志汇报会议研究的事项。市委办公室按会议要求督促跟进抓好落实,阶段性汇报工作推进情况。如,2022年第三季度联席会议提出,市委办公室、市委宣传部、市委政法委等单位要相互协调配合,共同做好重要紧急信息报送工作。会后,我们立即联合会商,研究健全全市重要紧急信息报送联动机制,并组织专题培训班,进一步提升重要紧急信息报送质效。当好工作安排的“调度员”。市委办公室认真研究、吸纳会上各单位提出的意见建议,按照会议部署的工作要求,对当前季度市委工作计划和活动预案进行优化调整,按照“月调度、周部署、日安排”方式高效调度,有序推动全市各项工作。
比如刚才我们讨论的很多海关法的一些争议和问题,例如研究走私罪的罪和非罪、此罪和彼罪、关于犯罪形态的问题。刑法学是有范畴的,就是犯罪的构成要件和犯罪构成要件的特殊形态。用这个去研究它,它就会得出一个相对确定的结论。民法学也是一样。但是在海关法里我们看不到有一个关于海关法的构成要件的学说。我们在海关法的讨论当中,大家都会从自我的实践中主观地提出一些建议。但是由于我们没有这种范畴和知识体系,没有用这种要件的方法或者原理的方法来指导我们,所以我们得出来的结论都是不确定的,这样得出的东西就会导致“公说公有理婆说婆有理”,他就不是一个科学的方法。这个层面是我们很欠缺的。我一直有一个愿望,要写一个没有一个海关法条文的海关法著作。如果能够写出这种著作,那就真的代表我们变得科学了,否则我们现在的海关法研究就没有突破科学这张纸,它就依然是很幼稚的。
无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。要把准巡回指导工作定位,切实尊重各单位D委主体地位,紧紧依靠他们开展工作,既指出存在问题又要帮助研究对策,真正实现同题共答。
四、坚持不懈奋斗路虽远,行则将至;事虽难,做则必成。高考竞争激烈,备考过程艰辛,需要同学们坚持不懈奋斗,全力以赴战胜备考的枯燥、困难、压力、挫折和疲倦!希望同学们把握好每一天的学习,深耕细作,重基础、重能力、重教材、重错题。认真上好每一节课,完成好每一次作业,破解好每一个问题,落实好每一天自主补短的学习任务,努力争取对各学科的学习达到“点点清、节节清、周周清”的目标。希望同学们重视每一次半月考试和重大考试,利用考试实战训练机会,巩固基础知识,提升学科能力,暴露并解决学习问题,训练应考心态,探索应考策略,提高应考能力。希望同学们珍惜宝贵时间,讲究学习和应考方法,真抓实干,苦干巧干,孜孜不倦,久久为功,不懈奋斗。
三、精准施策,科学部署夏训工作要想解决好执勤训练工作中存在的问题,我们就必须把“能打仗、打胜仗”的练兵鲜明导向立起来,建立长效机制,坚持治标兼治本,做到“统筹谋划、科学部署,科学推进、有条不紊,全力保障、全面提升”。1、以目标定向。建立夏训工作目标清单,清晰的时间表、制定保障机制三项工作。这三项工作要明确工作做什么、怎么做、如何保障,达到什么成效。2、建章立制。坚决纠正坐而论道,完善考评机制,解决干与不干、干多干少、干好干坏一个样的问题,使能带头带好头的干部受到褒奖和鼓励,使不干事、庸懒散、无责任心的干部受到鞭策和惩戒。3、科学组训。优化练兵方法、细化练兵方案、强化练兵研讨,明确“练什么、怎么练”的问题,助力履职尽责。4、多重激励。要从政治上、精神上、经济上建立健全奖惩激励机制,提升练兵热情,着力营造“你追我赶”的练兵氛围。5、服务保障。要着力解决保障明显不足的问题。
尊敬的各位评委老师: 你们好!我说课的内容是义务教育教科书人教版小学数学四年级下册第一单元第5-6页的内容《乘除法的意义和各部分间的关系》。下面我谈谈本节课的教学设想,不妥之处,恳请各位教师指正。一.我对教材的理解(教材分析)——参考教学参考书《乘除法的意义和各部分间的关系》是人教版小学四年级下册第一单元四则运算中第2课时的教学内容。本课是在学生对整数乘除法有了较多的接触,积累了丰富的感性认识并掌握了相应的基础知识和技能的基础上进行抽象、概括,上升到理性的认识。为后面学习的四则运算打基础,也为以后学习小数、分数的意义和关系做铺垫。二.学情分析(根据考评要求,可不说)因为年龄特征决定了四年级学生活泼好奇好动,虽具一定的抽象思维能力,但仍然以形象思维为主;就知识层面上,已经学习了简单整数乘除法,对整数乘除法及各部分名称有初步的感性认知,初步具备了理性认知学习的基础;同时又存在个体差异,多数学生思维活跃,数学兴趣浓厚,表现欲望强烈,少数学生缺乏积极性,学习被动。
一、教材分析《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:1、使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
不足之处是: 1 、在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在 “乱猜 ”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。 2 、总怕学生在这节课里不能很好的接受知识,所以在个别应放手的地方却还在牵着学生走。总结性的语言也显得有些罗嗦。 3 、课堂上学生参与学习的程度差异很明显的:一部分学生争先恐后地应答,表现得很出众,很活跃;但更多的学生或缺乏勇气,或不善言辞,或没有机会,而沦为听众或观众。 4 、本节课在教学评价方式上略显单一。对学生的评价少,激励性的语言不够。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
《卖火柴的小女孩》统编教材三年级上册第三单元的第一篇精读课文,是丹麦作家安徒生的著名童话。讲述了在下着大雪的大年夜,一个为了生活被迫卖火柴的小女孩冻死街头的故事。表达了作者对当时黑暗社会的痛恨,对贫苦人民的深切同情。文章虚实交替,美丽的幻象和残酷的现实更迭出现,是这篇童话的特点。本文原是人教版六年级下册第四单元“学习外国名篇名著”中的一篇文章,旨在引导学生感知外国作品的特点,理解含义深刻的句子,感受卖火柴的小女孩悲惨的命运,体会作者表达的思想感情。统编教材将文章编排在三年级,“感受童话丰富的想象”为本单元的语文要素,旨在引导学生发现幻象与愿望之间的关系,感受童话丰富的想象,帮助学生建立对童话体裁的初步认识。
导语:演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。 演讲稿是进行演讲的依据,是对演讲内容和形式的规范和提示,它体现着演讲的目的和手段。以下是小编为您搜集整理提供到的范文,希望对您有所帮助,欢迎阅读参考学习!普通话,请从我做起普通话是每个人都应该会说的,是一种以北京语言为标准音,以北方方言为基础方言,以典范的现代白话文著作为语法规范的一种通用的语言形式。普通话是我们学习说话的第一步,也是做一个文明人的第一步,要是一个人连最基本的普通话都不会说,他还怎么去和别人交流呢?普通话已深入到我们日常的学习和生活中,无论我们在干什么,普通话都回荡在我们周围的每一个角落。有人可能会问,“为什么要说普通话呢?”因为中国是一个多民族、多语言、多方言的国家,根据著名的语言学家周光有先生讲,我国56个民族共有80多种彼此不同的语言和地区方言,而我们每一个人又不可能一辈子都生活在同一个地方,固步自封,不去见识外面的世界吧,所以一旦我们身处异乡,便会遇到语言方面的障碍,不能与人沟通、交流。这时,如果我们都会说一种共同的语言——普通话,那么,就不用再为语言不通而急得满头大汗、不知所措了。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。