1、通过幼儿吹、分离、挖、塑造、经验回忆等活动,感知和探索沙轻、细小、不溶于水及加水后易造型的特性,了解沙的用途。 2、发展幼儿的感知能力,诱发想象力和创造欲。 3、引起幼儿对周围自然物的关注,培养幼儿爱护周围自然物的情感。 4、学习能两人和四人合作玩。重点:感知和探索沙的特性。难点:加水后沙在造型功能上的不同。过程: 一、用不同的感官感知干沙的特性: 1、用小筐子分离出小石子和细沙,并通过触摸、抓捏感受和体验沙细小的特点。 2、用吸管吹一吹干沙,体验干沙轻的特点。 3、把筛出的细沙倒入塑料杯中,通过观察和搅拌体验沙不溶于水的特点。 4、寻找宝藏—一通过用手扒开沙子找玩具的游戏。体验干沙松软的特点。 二、体验干沙与湿沙的区别: 1、爱喝水的沙—一往沙箱中加水,用手感知干沙与湿沙捏合上的区别,即干沙轻,不易捏合;湿沙重,易捏合。 2小组造型活动,体验湿沙可以任意造型。
2 培养幼儿对科学现象进行探索的兴趣. 准备: 杯子若干,盐,小苏打,白醋,搅拌棒,土豆片 过程: 自由探索 1 这是什么?(教师出示一个土豆),我把它切成了土豆片,现在我要把土豆片放到水里去,你们猜猜会怎样? 2 把土豆片放到水里会怎样呢?我们来试一试. 3 我这还有三杯水,我又要把土豆放到水里去,这回会怎样呢?(幼儿回答教师验证) 引导发现: 1 为什么这个杯子里的土豆片会浮起来呢? 2 老师帮你们准备了一些东西,看看是什么?你是怎样知道的?
2、初步了解同种物体,由于数量的多少,发出的声音也不同。3、初步尝试用不同声音的套桶为乐曲伴奏。4、培养幼儿的操作兴趣。 活动准备:1、人手一个套桶娃娃,蚕豆、米、绿豆等若干。2、《小手爬》的音乐,透明的瓶子若干。 活动过程:一、引导幼儿让套桶发出声音。 出示空套桶,“今天套桶娃娃想和我们小朋友做游戏。” 教师摇动空套桶,“你们听,怎么没声音?”1、教师设问: 你有什么办法让空套桶发出声音?(在套桶里装上东西)“我们一起动手让套桶娃娃发出好听的声音,在你的套桶里装上一样东西,盖好,握握紧,摇一摇、听一听。” 幼儿探索、操作。
2、引导幼儿了解蜡不吸水的特性比较发现经特殊加工后纸杯功用。重点:目标1所诉既重点。难点:目标2所诉既难点。二、活动准备。1、三个大水盆装满水,纸、笔若干。每组一个一次性纸杯装上水。2、幼儿每人事先折好一个小船。三、活动过程。(一)玩纸船。“请小朋友看看教室里有什么?”(水盆,水盆里有水)“你们想玩吗?想想你要怎么玩。”幼儿讨论后自由选择地方玩。
2、大胆尝试用身体创造洞洞,体验洞洞的有趣。 活动准备:图片、课件 活动流程与问题设计: 一、联系经验看图讲述 ●意图:联系生活经验,讲述梳理洞洞的已有经验。 1、我们的身体都有许多有趣的地方,今天我们就来找找身体上有没有有趣的洞洞。(出示图片)看看,这两位小朋友身上哪里有洞洞?2、牙齿很坚固,怎么会有洞洞?这个洞洞会给我们带来什么麻烦?3、心上有洞洞,会有什么感觉?什么事会让你感到心痛、难过?、 小结:这些洞洞给我们带来了麻烦、疼痛、难过,我们都不喜欢它们。
2、探索复制指纹的方法,萌发多样探索的意识。3、初步激发对科学、创造和探索自身的兴趣。材料环境创设:数字卡片、小纸片、颜料、印泥、橡皮泥、镜子、抹布等。设计思路:“我们的身体”是本班幼儿正在探索的主题活动,在探索小手的活动中,罗宜家提出了这样一个问题:“手指上的线叫什么呀?”但是,小朋友谁都说不上来。这是一个颇具价值的问题,因为它是我们在主题活动中生成的,有利于孩子们继续对自身进行探索的兴趣的培养。而且,现代的指纹技术正越来越与高科技融为一体,涉及到了很多方面,适当地在这方面丰富一些见识,不仅能开阔幼儿的眼界,且对于幼儿的科学探究兴趣也会有好处。另外,作为一个新班,我们的孩子们在探索能力上还显得很单一,缺乏运用多种方式探索的意识,本活动中鼓励幼儿大胆常识多种复制指纹的方法,对幼儿的多样化探索意识也是有帮助的。活动中,处于整合性原则,我还在其中,融合了识数教育,即观察时给手指纹编号,结合一切可利用因素进行自然衔接下的教育。拓展内化观察比较操作体验提问交流流程:1、提问交流:1)请罗宜家提出自己原先的问题。
2、学会主动关心照顾小树或大树。3、学会做观察记录。4、复习12以内的点数。5、认读树名。 活动准备:1、课前对园区树木进行观察,不同树上都挂有树牌(树的名称、树龄及生活习性)及编号(以便幼儿记录)。2、彩笔、图画纸、铅笔。3、幼儿卡(幼儿姓名、性别、年龄)。4、小桶。
2、探索锁的秘密,了解锁的作用,知道锁的重要。3、对观察和动手活动感兴趣,有强烈的探索欲望。活动准备:1、操作卡人手一份。2、收集各种各样的锁和钥匙。活动过程:一、提问引出话题:1、出示锁和钥匙:今天,老师带什么到幼儿园来了?小朋友也准备了各种各样的锁和钥匙,你带来的锁和钥匙是什么样子的?你想玩一玩吗?2、幼儿自由玩锁
1.认知目标:通过引导幼儿自己动手做实验,从而知道两种颜色加到一起会变成别的颜色。初步培养幼儿的兼容性、发散性和跨越性。2.情感目标:通过在活动中,引导幼儿仔细观察,鼓励幼儿大胆尝试记录实验结果。初步培养幼儿好奇心、冒险性。3.人格目标:通过让幼儿让孩子在活动中团结友爱体验创造的喜悦。培养幼儿团结友爱、自信大胆。4.动作技能目标:通过引导幼儿自己动手做实验,发展幼儿大小肌肉动作。活动准备:1. 物质准备:A.一瓶黄颜色的水。B.每组三个透明的小缸,分别装有红、黄、蓝色三种颜色、及棉签等C.记录材料每组一份,涂色纸若干。D.魔术师帽子。
“励”是鼓舞,劝勉;“志”是关于将来要有所作为的意愿和决心,是有识之士的心愿。“励志”是激发文气,以求有所作为的意思。下面是小编给大家整理的高二励志国旗下讲话稿,仅供参考。高二励志国旗下讲话稿(一): 老师们,同学们:早上好!今天我讲话的题目是《成功在于坚持》。首先我想与大家分享一个有趣的故事:这个故事发生在古希腊。开学第一天,大哲学家苏格拉底对学生说:今天咱们只学一件最简单也是最容易做的事。每人把胳膊尽量往前甩。说着,苏格拉底示范了一遍,从今天开始,每天做300下,大家能做到吗?学生们都笑了,这么简单的事,有什么做不到的!过了一个月,苏格拉底问学生们:每天甩300下,哪些同学坚持了?有90%的同学骄傲地举起了手。又过了一个月,苏格拉底又问,这回,坚持下来的学生只剩下八成。一年后,苏格拉底再一次问大家:请告诉我,最简单的甩手运动,还有哪几位同学坚持了?这时,整个教室里,只有一人举起了手。这个学生就是后来成为古希腊另一位大哲学家的柏拉图。这个小故事所蕴含的深刻含意是显而易见的。
解析:此题作为一道开放型题,分类的方法非常多,只要能说明分类的理由即可.但要注意:按某一标准分类时,要做到不重不漏,分类标准不同时,分类的结果也就不尽相同.解:本题答案不唯一,如按柱体、锥体、球体分类:(2)(3)(5)和(6)都是柱体,(4)(7)是锥体,(1)是球体.方法总结:生活中常见几何体有两种分类:一种按柱体、锥体、球体分类;一种按平面和曲面分类.探究点二:几何体的形成笔尖画线可以理解为点动成线.使用数学知识解释下列生活中的现象:(1)流星划破夜空,留下美丽的弧线;(2)一条拉直的细线切开了一块豆腐;(3)把一枚硬币立在桌面上用力一转,形成一个球.解析:解释现象关键是看其属于什么运动.解:(1)点动成线;(2)线动成面;(3)面动成体.方法总结:生活中的很多现象都可以用数学知识来解释,关键是要找到生活实例与数学知识的连接点,如第(1)题可将流星看作一个点,则“点动成线”.如图所示,将平面图形绕轴旋转一周,得到的几何体是()
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.三、板书设计1.用关系式表示变量间关系2.表格和关系式的区别与联系:表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的内角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法总结:本题主要利用了“直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.三、板书设计1.三角形的内角和定理:三角形的内角和等于180°.2.三角形内角和定理的证明3.直角三角形的性质:直角三角形两锐角互余.本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率.然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想.在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180°这一结论
解:(1)电动车的月产量y为随着时间x的变化而变化,有一个时间x就有唯一一个y与之对应,月产量y是时间x的因变量;(2)6月份产量最高,1月份产量最低;(3)6月份和1月份相差最大,在1月份加紧生产,实现产量的增值.方法总结:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.三、板书设计1.常量与变量:在一个变化过程中,数值发生变化的量为变量,数值始终不变的量称之为常量.2.用表格表示数量间的关系:借助表格表示因变量随自变量的变化而变化的情况.自变量和因变量是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.本节是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得14521.1x-1200x=20,解得x=6.经检验,x=6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是:第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.
分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直线AD垂直平分线段EF.方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计1.线段的垂直平分线的性质定理线段垂直平分线上的点到这条线段两个端点的距离相等.2.线段的垂直平分线的判定定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。