二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
2.整顿干部队伍。物业公司由原四个中心整合而成,员工很多,公司成立之初,干部上岗时没有进行竞聘,经过将近一年时间的工作,部分干部能够胜任工作,一部分能力还比较欠缺。经公司领导研究决定,今年会在适当时候进行调整,完善干部队伍,选拔高素质、能力强的员工为基层领导。 3.合理规划部门。公司建立之初部门的规划经过一段时间的运作,有不尽完善的地方,特别是不能提高工作效率,提升服务质量。我们将基于第2点对公司部门进行进一步调整,合理划分部门,现暂确定为五个部门,分别是学生公寓管理部、校园管理部、楼宇管理部、保安部、办公室。
2.整顿干部队伍。物业公司由原四个中心整合而成,员工很多,公司成立之初,干部上岗时没有进行竞聘,经过将近一年时间的工作,部分干部能够胜任工作,一部分能力还比较欠缺。经公司领导研究决定,今年会在适当时候进行调整,完善干部队伍,选拔高素质、能力强的员工为基层领导。 3.合理规划部门。公司建立之初部门的规划经过一段时间的运作,有不尽完善的地方,特别是不能提高工作效率,提升服务质量。我们将基于第2点对公司部门进行进一步调整,合理划分部门,现暂确定为五个部门,分别是学生公寓管理部、校园管理部、楼宇管理部、保安部、办公室。
一、“准确、快速、灵活”的意义及其关系。 “准确”是篮球运动中的一个突出矛盾,通常在比赛中因传球准确性差造成很多失误,或因投篮不准带来比赛的失败。篮球比赛本身攻守双方一切技术、战术的应用和对抗的焦点就是围绕解决能否干扰对方的一切行动的准确性并争取自己尽量多把球投入对方篮圈,因此,不难看出“准确”的重要。 快速”的目的是为了出其不意,攻其不备,可以造成以多打少;“灵活”是随机应变,克服不利条件,争取有利局势,没有“快”就没有“灵活”,“快”与“灵”为“准确”创造条件,保证“准确”的发挥,“快”与“活”是手段,“准确”是目的,反之,“准确”的动作缩短了时间,争取了速度,“准确”的投篮又逼使对方扩大防区,而对方防区的扩大,更有利发挥“灵活”和“快速”的特长。由此可见,“准确”是三者核心,应占首位。 二、在篮球队训练中的运用 我一直担任校男篮教练工作,通过几年来的实践,我在训练比赛中注意贯彻“准确、快速、灵活”这一指导思想,取得了显著的成绩。我校男篮在参加市级比赛中,多年保持前几名的地位。
(四)存在主要问题。一是缺乏专业技术人才,技术型的干部数量偏少,缺少熟悉生物多样性、林业保护、地质方面的专业人才。二是现有人员缺乏对保护区、风景名胜区专业规划的深刻理解,在使用智慧化手段开展生态保护和开展生物多样性监测等技术含量较高等工作时,一些干部难以有效胜任。三是外来物种防治难度大。松材线虫病呈点面状扩散至多个山头,疫木除治难度系数大;保护区生物多样性丰富,不宜开展大面积药物喷洒防治;部分游客缺乏防控意识,外来入侵物种被带入山。四是2021年至今XX没有按照合同约定支付人工林赎买流转款项,管委会将面临相关经营者及村集体上访、诉讼的风险。二、2024年工作安排1.全力推进XX国家公园创建。一是积极主动对接省林业局,加快推进XX国家公园创建的步伐。二是为对标国家公园管理机制,做好XX管理机构与未来国家公园管理机构的有机衔接打好基础。
(四)理顺园区管理体制。一是争取省编办经开区“三定”方案尽快批准实施;二是理顺经开区与市直部门和区的关系,尽快明确经开区的职责范围;三是健全经开区的管理服务机构;四是明确经开区四至界限,编制总体发展规划、控制性详细规划、产业发展规划。(五)强化规范监管服务。一是严格规划管理。严把项目“一书三证”的审查、审批关,对建筑容积率、绿地率、建筑外观等实行包抓责任制监管,确保符合园区规划要求;严格要求建设单位办理质监、消防等手续,履行工程报建、工程监理、工程质量委托、施工图审查等基本建设程序,提高规划审批质量。二是加强土地管理。采取收购置换、收取土地闲置费等措施,加大对圈而不建土地的回购、清收力度,盘活园区沉积土地;对新入园项目,严格论证审查投资额度及用地面积,强化用地合同管理,实行分批供地,防止产生新的闲置土地;做好未开发土地的规划储备,通过压缩清理、规划延伸,拓展园区空间,实现增区扩园目标。
五、认真开展道路交通安全专项整治2023年在管委会道路交通安全领导小组的布置下,由道路交通安全管理站牵头,联合派出所、交警队、交通执法、行政执法分局等单位,对村级道路每月进行不少于一次督查,发现问题及时整改。针对农聚路大型车辆较多,群众投诉不断,开展4次治超专项行动,办结交通行政处罚案件23件,罚没款2.9万元,卸载货物100余吨。通过联合整治行动。控制住超限超载行驶势头,消除道路交通安全隐患。虽然我区今年在抓好道路交通安全综合治理整治工作做了大量工作,但是离上级要求还存在一定差距,还存在有不足之处,尤其是农村山区还存在部分砂石路面未硬化,影响群众出行,还存在少部分电动车未登记牌照,无证照驾驶摩托车等行为,还须要加大工作量。
一、夯实工会组织基础,扩大工会组织覆盖面1、继续依法推进工会组建。按照20**年考核目标,以社区总工会为主要力量,继续推进工会组织建设,积极探索新思路、新方法,完善各项措施,坚持“横向到边,纵向到底”的工会组织网络体系建设。2、完善基层组织规范化管理模式。对考核文件进行微调,推进基层工会规范化建设工作,按照申报企业的实际情况和考核制度,指导帮助基层工会建立健全工作资料档案,做到工作台帐记录详细,定时召开领导小组工作例会,探讨工作经验与思路,及时总结经验,挖掘典型,树立榜样,相互借鉴,取长补短,进一步提升规范化管理的整体水平。
2、加强法律法规等教育。利用请进来、派下去等办法进行业务、法律、法规、心理学、安全生产等知识培训。一是邀请市总工会领导上课,一期授训120多人;二是利用全国总工会女工部派下来的心理学专家到村、企业上课,六期受训560人;三是利用新建工会召开职工代表大会之际上安全生产课,八期受训250人;四是与团工委等联合开展了“综治进民企”知识竞赛,与安监所等联合开展了“安全知识”竞赛。此外,各村、企业工会结合本单位实际,3、加强职能技能教育。一是街道工会与经发办等有关部门组织开展了两次消防演习,观摩人数达250人次;二是各工会广泛开展“学技术、比技能”为主要内容的操作运动会,金轮集团工会从6月份开始在各分厂开展了初赛,参与项目15个,参与人数达520人;集团工会打算于九月份进行决赛。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。