2. 教材分析这节课的教学是学生在掌握行程问题基本数量关系的基础上进行的,本课教材给学生提供了“骑车”的情境,通过简单的路线图等方式呈现了速度路程等信息。然后要求学生根据这些信息去解决2个问题:①让学生根据两辆车的速度信息进行估计,在哪个地方相遇。②用方程解决相遇问题中求相遇时间的问题。3. 学情分析学生已经在三年级接触了简单的行程问题,四年级上册,学生就真正的开始学习速度、时间、路程之间的关系,并用三者的数量关系来解决行程问题。而本节课正是运用这些学生已有的知识基础和生活经验进行相遇问题的探究。4、教学目标从知识与技能、过程与方法、情感态度价值观的三维目标出发,制定了以下的目标:①使学生理解相遇问题的意义及特点。②经历解决问题的过程,提高收集信息、处理信息和建立模型的能力。③会分析简单实际问题中的数量关系,提高用方程解决简单的实际问题的能力。
一、设计思路《数学课程标准》倡导尊重学生的主观能动性,以自主探究、合作交流为主要学习方式。因此,在本节课中我们充分体现了以学生为主体的设计理念,采用具有我校特色的高效课堂模式“三学五环”教学法,学生以“自主学习-合作探究”的方式进行学习,从而展示三学“独学、对学、群学”。在教学流程上以:“情境导入,引入示标;自主尝试;交流展示;精讲点拨;当堂检测”这五大环节来引领学生进入知识的殿堂。二、说教材充分领略教材编排意图,科学精当地分析文本,是采用“以学定教”,实现“有效教学”的第一步。《用有余数除法解决问题》是人教版小学数学二年级下册第67页的内容,它属于数与代数领域。本节课是在学生已经学习了表内除法、用竖式计算除法、有余数除法的基础上进行教学的。同时,本课为今后学习近似数、估算进行了初步的铺垫。
第一个板块是“脑筋急转弯”,激发学习兴趣。目的有两个:一是拉近与学生的距离,二是为本节课做铺垫。第二板块是自主探究,优化策略。这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“一张和两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。1、探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。
一、说教材“植树问题”是人教版新课程标准实验教材五年级上册“数学广角”106页的内容。本节课主要探讨关于在一条线段植树的问题,只要教过这节课的老师都知道,即使在一条线段上植树也有不同的情形:本节课主要讲的例1,主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用画线段图的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
一.教材分析本节课是人教版六年级上册第38页例5,首先我对本节教材内容进行如下分析:本节课的教学设计力图体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。 二.学情分析:我对我班学生也做了比较详细的分析,我班有13名学生,人数不多,但对数学知识的学习两极分化比较严重,大部分学生对数学学习有着浓厚的兴趣,但也有一部分学生与其他学生差异较大,对数学学习缺乏信心,积极思考的习惯有待于培养。因此在本节教学中,我关注更多的是用学生已有的知识经验激发学生的兴趣。
一、说教材《用比例解决问题》是义务教育课程标准实验教科书六年级下册第四单元比例的第三节比例的应用的一个子内容,这部分内容是在学生学习过比例的意义和基本性质,正比例和反比例意义基础上进行教学的,是比例知识的综合运用。教材在这部分内容中安排了例5和例6两个含正、反比例的问题,这类问题学生实际上已经接触过,只是用归一、归总的方法来解答,本节课要让学生从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略。通过解答可以使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列方程,也可以巩固和加深对所学的简易方程的认识。所以这一教学内容既是对前面所学的正、反比例知识的巩固和应用,另外也是为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
《数学课程标准》指出;“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共发展的程。”这节课中我尽量体现这一新理念,可是教完之后,通过大家的评课,使我知道了自己很多的不足。我感受最深的是在这节课的教学中,要想学生能理解运算顺序,最好的方法是图文结合教学,让学生在具体情境中去理解运算顺序,我觉得这点建议挺好的,使我明白了在今后教学中要注意这点,其实,在课前,我也想到了这点,只是在教学中又忽视了。就如聂老师说,将没摘和摘走的图片进对比,或者将这个做成动画这样更形象直观,这样孩子们更能加深理解。还有就是课件中出先的一个错误就是将加减法算计都写成了加法算式,这是我的失误。我这节课的重点是引导学生发现问题、提出问题并解答问题,但我觉得学生的课堂气氛还没有完全的调动。
设计思路:以教师从淄川到张店西六路小学讲课的亲身经历为线索,创设具有浓郁的生活色彩的教学情境。教学素材来自生活,学生的注意力能迅速被吸引到多姿多彩、具体可感的现实生活中,学生感觉亲切自然、兴趣浓厚;所求问题源于学生自己,其主动精神被充分激发,自主解决问题的动机强烈;解题方法由学生在独立思考的基础上小组研讨得出,学生的主体作用得以充分发挥;最后让学生帮老师解决返程的实际问题,在颇富挑战性的情境中,既巩固了新知,又培养了学生运用知识解决实际问题的能力,向现实生活做了适当的延伸。自始至终,气氛和谐生动自然,学生在生活化情境中积极主动地提出问题、解答问题、展示自我,整个课堂呈现出情知交融、知行统一、个性共扬的气象,课堂上流淌着积极参与、主动创新的欢声笑语。教学过程:一、创设自然生动的生活情境师:同学们,昨天咱们已经见过面了,谁还记得我?(学生踊跃举手,气氛热烈。)师:你已经了解了我的哪些情况?
在此基础上教师又适时提出问题“根据你摆的飞机,谁能提个问题让大家猜一猜?”学生兴趣盎然,提出了诸如“我用10根小棒摆几架飞机”的问题,由此引出“求一个数里含有几个另一个数的除法含义”,为学习“一个数是另一个数的几倍”奠定了基础。在学生动手操作、动眼观察的基础上,课件出示例题中小强提出的问题:“我摆了3架飞机,我用的小棒根数是小红的几倍?”怎么解决这个问题呢?我请学生在小组里讨论,在动脑思考、充分探究中找到了“求一个数是另一个数的几倍是多少”的解题思路,即“求一个数是另一个数的几倍”的含义,就是“求一个数里含有几个另一个数”,用除法计算,15÷5=3。在这样的教学活动中,学生经历了解决问题的过程,学会了用数学的思维方式去观察、分析实际问题,学会了从数学的角度提出问题、理解问题、解决问题,培养了综合运用所学知识解决实际问题的能力。
《排队问题》是人教版教材第七册《数学广角》中的内容,是继“烙饼问题”、“沏茶问题”之后再一次向学生渗透运用运筹思想解决生活实际问题的新增内容。排队论是关于随机服务系统的理论,其中的一项研究是怎样使服务对象的等候时间最少的问题。这部分知识对学生来说,比较抽象,难以理解的。但由于学生在日常生活中都有过排队等候的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过演绎、例举、观察、分析、优化,形象地帮助学生理解什么是“等候时间的总和”,以及归纳出按怎样的顺序安排才会使等候时间的总和最少。本节课采用“阅读-讨论式教学法”。通过让学生阅读教材中的主题图和相关文字,初步感知生活中的数学现象,通过讨论,合作学习,探索出各种排队等候的方案,在通过计算,对每种方案进行选择,从而找到最优化方法,在此过程中,让学生体会到运筹思想在解决生活中实际问题的作用。
这节课的教学内容是九年义务教育六年制小学教科书数学第九册,P117——P119页复习、例1、例2、解方程的一般步骤、想一想、做一做及P120页T1-4。教学目的有以下三点:1、使学生掌握列方程解两步应用题的方法。2、总结列方程解应用题的一般步骤。3、培养学生分析数量关系的能力,提高学生在列方程解应用题时分析等理关系的能力。教学重点:分析应用题里的等量关系,会列方程解应用题。教学难点:分析应用题里的等量关系。教具准备:小黑板、写好题目的纸条等。这节课在学生已有的解方程、分析应用题数量关系等知识的基础上进行教学,使学生掌握列方程解应用题的方法,为以后学习更深入的知识打下基础,同时培养学生积极思考问题,热爱自然科学的品质。
(2)请你思考:师:这样就需要设计一张其他面值的邮票,如果最高的资费是6元,那么用3张邮票来支付时,面值对大的邮票是几元?可增加什么面值的邮票?(学生分组讨论设计思考)生:6元除以3元就是2元,可增加的邮票面值可为2.0元,2.4元或4.0元。(3)小结:虽然满足条件的邮票组合很多,但邮政部门在发行邮票时,还要从经济、合理等角度考虑。【设计意图:大胆放手,让学生参与数学活动。让学生成为课堂的主体,让他们在动手、动脑、动口的过程中学到知识和思维的方法,知识的获得和学习方法的形成都是在学生“做”的过程中形成的。】四、巩固深化:1、如果小明的爸爸要给小明回一封不足20g的信,他该贴多少钱的邮票?2、如果小明的好朋友要寄一封39g的信,他该贴多少钱的邮票?五、课后实践:课后给你的亲戚或者好朋友寄封信。
在尊重学生已有的知识与经验基础上,努力营造一个充满“磁性”的课堂环境。着眼与培养学生的创新素质,作好学生学习活动的组织者、引导者、参与者,使每一名学生都能得到不同程度的发展。二、教材分析1.教材的地位和作用说课的内容是人教版六年级上分数乘法的应用题,分数乘法单元中求一个数的几分之几是多少的简单应用题。拟引导学生在提出和解决实际问题的过程中,学习“求一个数的几分之几是多少”的问题的解答方法。是在初中第一个培养学生应用意识的问题,能开发学生的创新思维,也是后面分数除法应用题的基础。《数学课程标准》倡导学习大众的、现实的、有价值的数学理念,因此教师在教学中,应该从学生熟悉的生活现实出发,让学生由具体的问题引入现实情境。将解决现实问题与学习分数乘法的知识相结合,帮助学生理解分数乘法应用题的计算方法,有利于培养学生解决实际问题的意识和能
(三)看书质疑师:今天探索的问题与教科书第20-21页里例2-例3的内容相似,打开看看,书是怎么解答的?有疑问的可以提出来。生认真看书。生质疑。三、模拟练习,拓展应用师:请看学校调查表(课件出示),还有什么问题没有解决啊?(买折叠车和同学去秋游的人数)想解决吗?(想)师:提供这个信息能解决什么问题呢?生:买车的人数。师:你会直接口算吗?会的请你站起来告诉大家。生都站了起来了。师:这么都同学会啊,老师很为你们高兴,还是请代表说。生说。师:你们有意见吗?生:没有(好)师:谁能求出选择秋游的人数?生:不能啊,条件不充分师:那你能根据图意估计一下,然后补充一个条件,使我们能用今天的知识算出这些人数吗?
教材分析:例2以学校兴趣小组为题材,引出稍复杂的已知一个数的几分之几是多少,求这个数的实际问题。用算术方法解决这样的实际问题,不仅需要逆向思考,还要把“比一个数多它的几分之几”,转化为“是一个数的几分之几”,比较抽象,思维难度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要经历从“多几分之几”到“是几分之几”的转化,实际上是方程的形式,算术的思路。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。学情分析:由于小学生目前尚未接触到比较复杂的,用算术方法很难解决的实际问题,所以对方程解法的优越认识不足。一些学生觉得用方程解需要写设句,比较麻烦,因此喜欢用算术解法。对此,教师一方面应肯定学生自己想到的正确解法,另一方面又要因势利导,从进一步学习的需要与方程解法的特点等角度,使学生初步了解学习列方程解决问题的重要性。从而提高学习用方程解决问题的自觉性和积极性。
【设计意图】通过认识自我这一环节的设计,让学生能够准确的理解矛盾的主次方面,做到能够正确的评价事物,尤其是能够正确的认识评价自己和他人,做到扬长避短,从而达到情感态度价值观目标。为了更好的区分主次矛盾与矛盾的主次方面,在此我以小组赛的形式设计了【我用我学正确识别】这一学生合作探究活动来强化对知识的掌握。(用时大约6分钟)。通过对难点主次矛盾和矛盾主次方面的深入学习,师生共同找出其共同之处:均是两点与重点,从而讲解主次矛盾和矛盾主次方面共同的方法论要求:坚持两点论与重点论的统一。3、坚持具体问题具体分析(约8分钟)由于第二目知识点具体问题具体分析内容上比较简单,因此在过渡后主要以学生自学为主,我围绕“成功”制作两个幻灯片作简单讲解与归纳。
五.说教学过程:(重点)1.课题引入:课堂探究导入新课。采用教材现成的探究活动导入新课,既“温故”又“知新”,还节约了课堂有效时间。2.讲授新课:(20-25分钟)本课的重难点是关于哲学基本问题的解释,我引用一个很著名的学生也略知一二的唯心主义观点的例子(课堂探究1)顺利进入本课重要知识点的学习,采用案例教学,激发学生的兴趣以及探究问题的欲望,学习哲学基本问题的第一个方面,并用问题和练习形式巩固知识,强化学生易错已混知识点;课堂探究2,同样引用哲学上的著名案例让学生分析探究思考以及合作交流,学生趣味浓厚,主动深入学习本课知识,达到预期教学目的。此时,本课的重点知识教学完成。关于本课的第二个知识点“为什么思维和存在的关系问题是哲学的基本问题”采用学生自主阅读、合作交流的方法,归纳总结,完成本知识目标。3.课堂反馈、知识迁移(10-15分钟)采用学生总结、随堂练习等形式巩固本课知识,同时检验教学效果。可使学生更深刻的理解教学重点。
2、系统的基本特征系统观念为人们把握复杂事物提供了一系列科学方法和原则。第一,整体性原则。第二,有序性原则。第三,优化原则。学生的兴趣被激发,可以再调起高潮,让学生听一首歌曲,三个和尚挑水,让学生从愉快的歌声中,明白一个道理:“三个和尚没水喝”,导致这一结果的根本原因就在于人数虽然多了,但没有形成合理的结构,不是相互支持,相互促进,而是相互制肘、相互消磨,结果各要素的力量或作用被内耗了,出现了1+1<2的效应。所以,就要求我们一定要做到:3、掌握系统优化的方法的要求(1)着眼于事物的整体性;遵循系统内部结构的有序性;注重系统内部结构的优化趋向。(2)用综合的思维方式来认识事物巩固练习:以巩固知识为基础,培养能力为目标。
②关于哲学的第二个问题是——思维和存在有没有同一性解释同一性——就是说意识(思维)能否正确认识物质(存在)的问题。(让学生表达他们自己的意见)总结得出三种看法——认为意识(思维)可以正确认识物质(存在)的,属于可知论者;凡是认为意识(思维)不能正确认识物质(存在),属于不可知论者。当然也有些同学是两者观点都有,这种同学我们把他称为不彻底的不可知论者。2、为什么思维和存在的关系问题是哲学的基本问题(1)它是人们在生活和实践活动中首先遇到和无法回避的基本问题(举例说明问题,吃饭的时候吃什么菜,学习计划与学习的实际等等)结合教材P10探究进行讲解举例:11月31日请全班同学吃雪糕,吃完后再去肯德基大吃一顿,之后再到卡拉OK唱通宵——不切实际,因为11月并没有31日。(2)它是一切哲学都不能回避、必须回答的问题(不同的回答,直接决定着哲学的不同发展方向。)
1、课题引入:11月16日9时40分许,甘肃庆阳市正宁县榆林子镇发生一起重大交通事故,“校车安全”又一次甚嚣尘上,我设计提问“校车安全事故然表面是偶然,但又是一种必然,你认为事件的原因何在?”的问题激发学生的阅读兴趣。我设计典型事例,通过学生讨论,教师总结的形式,并得出主次矛盾辩证关系的原理分析。2、具体分析事件背后的原因,从原因中发现,这众多的原因矛盾中,都有主次方面之分,由于得出矛盾的主次方面原理。3、从原因中,寻找对策,既坚持重点论与两点论的结合。反对一点论和均衡论。4、无独有偶,在2011年在湖南,海南,广西等地均有类似的事件发生。对比各地事故背后的原因,得出应具体问题具体分析。进而分析具体问题具体分析的意义及地位。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。