知识技能目标: 1、借助生活中的实例,体会用字母表示数的必要性和重要性。 2、在具体的情境中能利用字母表示数进行表达和交流。知道字母所表示的不同取值范围。 过程方法目标: 1、在探索现实世界数量关系的过程中,体验用字母表示数的简明性。
设计意图:发现生活中污染、浪费水资源的现象,明白可以靠 法律法规的作用,切实有效地保护水资源。活动三:我们和小水滴 课件出示儿歌《我们和小水滴》,学生先自己诵读,再齐读。 设计意图:学以致用,深入感受水资源的珍贵,自觉珍惜水资源。环节三:感悟明理,育情导行 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:拓展延伸,回归生活 生活中,大家要自觉珍惜水资源。设计意图: 将课堂所学延伸到学生的日常生活中,有利于落实行 为实践。六、板书设计为了突出重点, 让学生整体上感知本节课的主要内容, 我将以思 维导图的形式设计板书: 在黑板中上方的中间位置是课题 《小水滴的 诉说》,下面左边是板画的小水滴, 右边从上到下依次是宝贵, 稀少, 珍惜。
学生在朗读同时也在接受美的熏陶。在教学中,我始终重视让“趣”字贯穿整个教学过程,在读读、想想、说说中感受美,培养想象力并进行朗读训练。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.
本节课是正弦函数、余弦函数图像的继续,本课是正弦曲线、余弦曲线这两种曲线的特点得出正弦函数、余弦函数的性质. 课程目标1.了解周期函数与最小正周期的意义;2.了解三角函数的周期性和奇偶性;3.会利用周期性定义和诱导公式求简单三角函数的周期;4.借助图象直观理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等);5.能利用性质解决一些简单问题. 数学学科素养1.数学抽象:理解周期函数、周期、最小正周期等的含义; 2.逻辑推理: 求正弦、余弦形函数的单调区间;3.数学运算:利用性质求周期、比较大小、最值、值域及判断奇偶性.4.数学建模:让学生借助数形结合的思想,通过图像探究正、余弦函数的性质.重点:通过正弦曲线、余弦曲线这两种曲线探究正弦函数、余弦函数的性质; 难点:应用正、余弦函数的性质来求含有cosx,sinx的函数的单调性、最值、值域及对称性.
指数函数与幂函数是相通的,本节在已经学习幂函数的基础上通过实例总结归纳指数函数的概念,通过函数的三个特征解决一些与函数概念有关的问题.课程目标1、通过实际问题了解指数函数的实际背景;2、理解指数函数的概念和意义.数学学科素养1.数学抽象:指数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用指数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结指数函数概念.重点:理解指数函数的概念和意义;难点:理解指数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入在本章的开头,问题(1)中时间 与GDP值中的 ,请问这两个函数有什么共同特征.要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数函数与指数函数是相通的,本节在已经学习指数函数的基础上通过实例总结归纳对数函数的概念,通过函数的形式与特征解决一些与对数函数有关的问题.课程目标1、通过实际问题了解对数函数的实际背景;2、掌握对数函数的概念,并会判断一些函数是否是对数函数. 数学学科素养1.数学抽象:对数函数的概念;2.逻辑推理:用待定系数法求函数解析式及解析值;3.数学运算:利用对数函数的概念求参数;4.数学建模:通过由抽象到具体,由具体到一般的思想总结对数函数概念.重点:理解对数函数的概念和意义;难点:理解对数函数的概念.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律.反过来,已知死亡生物体内碳14的含量,如何得知死亡了多长时间呢?进一步地,死亡时间t是碳14的含量y的函数吗?
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
教要有法,本活动我运用了“直观、探索法”“讨论法”引导幼儿带着问题去观察去思考,下面我对所运用的教法做一个简单的介绍:1.直观、探索法:利用参观“车展”让幼儿更直观去观察各种各样的车,让幼儿通过视、触觉获取有关汽车种类和功能。更直观了解各种各样车的外形特征,帮助幼儿提升原有的经验,又为后面的绘画做好知识准备。2.讨论法:幼儿通过交流各种各样的车达到共同学习,通过讨论充分发表对汽车的外形特征及功能。引导幼儿通过自由和集中交流,大胆和同伴、老师对自己所了解的各种各样的汽车进行交流讨论,使幼儿的认知、语言表达能力得到有效的提高。
2、发展幼儿思维的准确性、灵活性,激发幼儿参与数学活动的兴趣。 活动准备 1、连线纸、水彩笔人手一份 2、鸡蛋、鸭蛋、鹅蛋、鸟蛋图片若干 3、摆放成封闭式的平面鸡蛋、鸭蛋、鹅蛋、鸟蛋若干张 4、数字卡片 活动过程 一、引起幼儿兴趣、交代主题,活动导入。 1、游戏《连线找客人》 “今天我们这里来了四位神秘的客人,把卡片上的点子按数字从小到大的连起来,你就可以知道了。” 2、幼儿连线,教师将幼儿作品贴在黑板上。 今天来的客人是谁?(一起说一说) 小动物们说:小朋友,你们知道谁是我的妈妈吗?请你们帮帮忙,把我们的妈妈找出来吧! 出示相应的动物妈妈图片。
【活动目标】1、引导幼儿认识物体与物体之间的空间位置关系。2、能够说出什么在什么的上面,什么在什么的下面。 【活动准备】1、球、苹果、玩具狗、各一个。2、各种玩具若干。 【活动过程】一、导入引导幼儿观察1、师:“小朋友们今天我带来了几位好朋友到我们班来做客,想和小朋友们一起玩游戏,你们看这是谁啊?(教师出示篮球一个)。还有一位好朋友它在和小朋友们捉迷藏呢!我们一起来找找看它在哪啊?到底是谁?咦!找到了,原来它藏在书下面啊!快出来跟我们小朋友打个招呼吧”!“小朋友们,你们好!我是你们最喜欢吃的苹果,很高兴和小朋友们一起玩。”
一、教材分析1、教材的地位和作用函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
【活动目标】 1、发现周围世界中处处有数字,体验发现的乐趣。 2、知道数字与自己生活有密切关系。 3、尝试用符号或绘画的形式进行记录。 【活动准备】 寻找、收集、生活中的各种有数字的物品,布置在活动室里。0—9的数字卡。幼儿绘画纸每人一张,彩笔每人一致。多媒体课件。 【活动过程】 一、教师以儿歌形式导入,引起幼儿活动的兴趣。 1像铅笔细高挑,2像小鸭水上漂,3像耳朵听声音,4像小旗迎风飘,5像秤钩来称菜,6像哨子吹口哨,7像镰刀割青草,8像麻花拧一遭,9像勺子来盛饭,0像鸡蛋做蛋糕。
2、复习9以内的数字、数数,并区分6与9。准备:1、几何图形组合画三幅(还有小动物)。 2、幼儿每人一份数字卡片 3、每组提供白色纸条、浆糊、记号笔。过程:一、看图编电话号码。 (1) 我们将要去春游了,我想邀请小动物一起去请大家想想办法用什么方法通知它们?(幼儿泛讲) 师:你们真会动脑筋,想了很多办法,那么,用什么方法最好呢?
【活动准备】 1、1-6数字卡、动物卡片 2、5的相邻数课件 3、幼儿操作练习题 【活动过程】 1、组织幼儿谈话:今天老师请来了自己的好朋友,请你们和我的好朋友们打个招呼吧!你有自己的好朋友吗?你的相邻好朋友是谁? 2、出示动物卡片,请幼儿说出它们的名称、房间以及各自相邻的好朋友。 “小动物们最近搬新家了,它们听说你们最聪明了,想请你们帮它们认识认识它们的左邻右舍,你们说可以吗?那我们就把它们请出来吧!” (1)分别出示5种不同的小动物卡片,利用1~6数字卡,引导幼儿说出他们的名称和几号房。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
活动准备: 魔术师的衣服、帽子各一件,三种图形卡片各一张,头饰各一个,不同表情的三种图形卡通挂饰每人一个,三种图形的彩色卡片若干(粘在“图形妈妈”身上),三种图形的标志牌各一个,户外布置好“小商场”,三种不同形状的实物若干。 活动过程:(一)以变魔术的游戏形式导入,激发幼儿兴趣。 1、老师打扮成魔术师的样子对孩子们说:“我是神奇的魔术师,我能变出很多很多的东西,看我变变变”。(边说边转一圈,从袖子里拿出三角形)。 提问:(1)我变出了什么? (2)三角形有几条边?(伸出手点数) (3)你见过什么东西是三角形形状的? 2、用同样方法,从左兜里变出正方形,提问相似问题。 3、用同样方法,从右兜里变出圆形,提问相似问题。 (二)进行游戏:图形娃娃找家 1、以魔术师的身份变出图形娃娃,送给孩子们。 师:我的本领可大了,还能把你们变成图形娃娃,看我变变变(从隐蔽的地方拿出卡通图形娃娃挂饰,让幼儿辨认形状),你喜欢哪一个,就自取一个挂在脖子上,自己摸一摸,看一看你是什么形状的娃娃?
2.在操作活动中,努力学会独立完成制作正方体的任务。 3.体验参与数学活动的快乐。 活动准备: 教具:正方体 正方形学具:《幼儿用书》各种长方体及正方体的物品 活动过程: 一、初步认识正方体 师:老师这有一个大魔方,请你看一看它是什么形状的? 幼:正方形(正方体)教师把正方形和正方体进行比较。 (1)师:请你看一看这个魔方的面是什么形状的?(正方形),所有的面都是正方形吗?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。