1、数字找朋友——激发幼儿对数学活动的兴趣。 2、找数字——幼儿在食物上找数字,并激励幼儿相互交流,说说自己的发现。 3、生活中的数字——通过讲述、猜想来激励幼儿畅所欲言,充分调动幼儿的积极性,营造轻松愉悦的氛围,拓展幼儿已有的生活经验。 4、幸运号码——通过游戏发现数字的趣味性和丰富性,从而更真切的体会数字的神奇,随便的调换数字的位置就可以排成不同的数字组合。 5、设计电话号码——幼儿运用已有的知识解决问题,为自己编电话号码。让没个幼儿参与其中,从而体验成功感,使他们对数字产生极大的兴趣,激励幼儿在生活中主动观察事物和运用数字,为以后学习奠定基础。
总之,在这届全国青教赛中,绝大多数参赛选手都很好,都很专业,都很努力,但是也存在一些问题,也出现了一些违规行为。(略)对于存在这些问题的选手,评委会经过集体讨论,按照有关规则给予了相应的处罚。按照总结大会的发言习惯,我也要表示感谢。第一,我要代表全体评委,感谢这届大赛的主办方组委会对我们的信任,让我们担任了竞赛的评委。第二,我要代表全体评委,感谢这届大赛的承办方清华大学,为我们提供了细致、周到、高效的服务和技术支持,特别是那些志愿者,不厌其烦地指导我们使用电子评分系统。对于像我这样的老教师来说,这还是挺有难度的。第三,我要代表全体评委,感谢参赛的选手。我们不仅从你们的讲课中学到了新的知识和方法,也在你们身上看到了我们的过去,还看到中国高等教育的未来。虽然这不是未来的全景,但是令人欣慰令人鼓舞的画面。第四,作为评委会主任,我还要感谢所有评委。这几天,各位评委确实非常辛苦,有的老师还带病坚持工作。你们的敬业精神令我感动!
活动目标:1、激发幼儿与同伴交流和分享的兴趣,帮助幼儿获得基本的交流经验。2、鼓励幼儿大方的把自己喜欢的车介绍给大家,并乐于想象未来的车。3、引导幼儿了解自己喜欢的车的名称、样子和用途,并尝试粘贴公共汽车。活动准备:1、请幼儿搜集各种汽车模型并布置成“汽车城”。2、各种汽车图片、小标志。3、录音机、音乐磁带《汽车开来了》、故事《神奇的变形车》磁带。
活动准备: 装有冷水和热水的瓶子各10个,热水袋、冰块各一份,布袋两个,各种物品图片大小各一份。活动过程:一、布袋里的秘密1、师:今天,老师带来了两个布袋袋,里面藏着小秘密,你们想不想知道? 请两名幼儿来摸摸,说说摸到了什么?2、教师出示热水袋和冰块,让孩子们摸摸,说说感觉。3、你喜欢冷冷的还是热热的?4、小结:冬天到了,我们喜欢热热的,天气热了,我们就喜欢冷冷的。
【活动准备】 瓶子、米粒、豆子、图案贴纸(用于装饰瓶子)、背景音乐《白龙马》、乐器幻灯片 【活动过程】 一、童话故事导入。圣诞节到了,小企鹅和金丝猴收到了圣诞老人送给他们的礼物。小企鹅受到了一盒巧克力,金丝猴也收到了一个包装很漂亮的礼物,高兴地打开看,原来里面装着一个普通的瓶子,他有点太失望了。圣诞老人笑呵呵地说:“金丝猴,你可别小看这个瓶子,它叫“铃铛乐器”,他很神奇呢!接着,圣诞老人唱起歌来,还不停地摇动瓶子伴奏。金丝猴一看,原来这是用瓶子制作的“铃铛乐器”啊,金丝猴开心地笑了起来。小朋友我们也来做一个吧! 二、认识材料:瓶子、漏斗、米粒、豆子、图案贴纸。
[活动目标] 1、培养幼儿用肥皂洗手的良好卫生习惯。 2、通过幼儿的自主探索活动,使幼儿知道肥皂的外形特征及用途。 [活动准备] 各式各样的肥皂及肥皂盒若干;各种旧玩具、旧手绢等;吹泡泡玩具瓶(与幼儿人数相等);“我爱洗澡”音乐及磁带、录音机;盛玩具的小筐若干;干净毛巾(与幼儿人数相等)、盛水的大水盆六个,小方布一块,剪好的小红星若干。 [活动过程]1、《我爱洗澡》音乐,老师与幼儿做动作进入活动室。 (1)老师吹泡泡引起幼儿兴趣。 (2)出示肥皂并请幼儿描述。(请幼儿自由发言) (3)出示多种多样的肥皂,让幼儿观摩。老师引导幼儿观察肥皂形状、颜色、气味,并用手摸摸,说出感觉。(幼儿分别发表自己的意见)
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
二、典例解析例3.某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,其价值会逐年减少.经验表明,每经过一年其价值会减少d(d为正常数)万元.已知这台设备的使用年限为10年,超过10年 ,它的价值将低于购进价值的5%,设备将报废.请确定d的范围.分析:该设备使用n年后的价值构成数列{an},由题意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}为公差为-d的等差数列.10年之内(含10年),该设备的价值不小于(220×5%=)11万元;10年后,该设备的价值需小于11万元.利用{an}的通项公式列不等式求解.解:设使用n年后,这台设备的价值为an万元,则可得数列{an}.由已知条件,得an=an-1-d(n≥2).所以数列{an}是一个公差为-d的等差数列.因为a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由题意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范围为19<d≤20.9
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
1、加强对危险化学品的管理,制定管理和实验操作规则,并配备专人管理,对危险化学品实行专人、专柜、加锁的措施。 2、加强对学生实验课的规范教育。 3、加强实验课前对化学用品、实验设备的检查与维护,发现问题,及时整改。 三、处置程序 一旦发生急性化学中毒事故,应遵循以下程序处理。 1、一旦发生事故,立即向学校报告,学校领导应立即赶到现场,同时在第一时间向教育局有关部门报告。
有的人面子思想严重,工作不够大胆,但只要用心在工作、生活中去克服,去锻炼,我们以后处事就会坦然很多。有的人天生个性较强、性格急躁,不利于工作,但只要用心去磨砺,我们就会更好地适应团队、适应社会。也许我们的工作条件和工作环境还不尽如人意,但只要我们用心去争取领导的支持、争取同事的帮助、争取社会的认同,那样,我们的条件和环境就会很快得到改善。
2、运用目测接数的方法感知、判断8以内的数量。 3、能较仔细地进行操作,注意保持幼儿用书画面的整洁。 活动准备: 1、经验准备:幼儿认识了数字8,有目测接数的经验。 2、物质准备:教具和学具。 活动过程: 一、音乐活动《小蝌蚪》。 教师带领幼儿随着音乐扮演小蝌蚪游进教室,并根据歌词内容表演。 二、看数字找蝌蚪。 1、教师:青蛙妈妈遇到了一件伤心的事情,它找不到自己的宝宝了,你们愿意帮助它们吗? 2、教师:你知道每只青蛙妈妈生了几个宝宝吗?你是从哪儿看出来的?引导幼儿从青蛙身上的数字说出它生了几个宝宝。
一、认识说课的实质说课是指教师以现代教育理念为指导,在精心备课的基础上,面对同行或教学研究人员,采用口头语言或相关辅助手段,阐述某学科课程或某具体课程的教学设计及其依据的教学研究过程(李崇爱,孟应周,2011)。简单而言,说课就是教师对“教什么”、“怎么教”、“为什么这么教”等问题进行阐述。这样做的目的,一方面可以展现一个教师的教育理论修养、教学组织能力和口头表达能力,另一方面可以帮助教师优化教学设计,反思教学行为,分享教学经验。
老师们,同学们,早上好!今天我在国旗下讲话的题目是《玩转数学,你能做到》。怎么想到要用“玩转”这词呢?因为我看到现在已很少有同学能以愉悦的心情对待数学的学习,若任由这种压抑持续,你会发现,灵感会逐渐枯竭,也会失去对未知探索的激情。我们真的可以做得更好些。可以在以下几方面做些尝试。1、重视自学。因为自学所获得的数学知识包含了自己的理解,掌握得更牢固,理解得更深,更因为自学习惯的养成、自学能力的提高有利于人的终生发展。数学如何自学?当然就是看书了。看数学书和看故事书有什么不同呢?故事书的一般方式是品味当前的内容,期待着后面的内容。而看数学书的方式应该是理解已经看过的内容,然后推测下面又是什么。就是你不要等书上写出来、不要急于往下看,先看能不能自己解决问题。看玩书后,还要检验是否读懂数学书。如何检验?因为我们的数学书,大多数在每一节后面都给你配了题目,你只要前面看完了,后面的题目做得出来了,就基本可以告诉自己,我前面看懂了。如果你前面看了,后面这些题目都做不出来,你还得重新再去看过。不要说,“我看过了,但是后面题目我一道都做不出来。”那你前面就没有用心去看过,我提议你要想着读数学书,这个想着,就是一边看一边想着,要动脑筋的看。
在聆听的过程中我让学生认真思考:歌曲的情绪是怎样的?力度怎样?歌曲可分为几部分?(教师相机板书)首先我从第二部分开始教起,首先让学生跟音乐轻声的演唱,可以先试唱歌谱再唱歌词,特别要提醒“啊”的演唱要唱出对老师的深情。歌曲播放完后,教师与学生来进行合作:教师演唱第一部分,学生演唱第二部分。让学生通过与老师的合作加深对第一部分的印象:接下来学习第一部分:我让学生轻声跟音乐演唱,教师指导音高、节奏、音色、歌唱的状态。然后让学生用圆润、饱满的声音完整的来演唱。(教师对学生的演唱进行评析),然后老师让学生再演唱一次并达到以下的演唱要求:第一段用稍弱的音量、稍慢的节奏,第二段用感激的心情、中速来进行演唱。接下来的时间让学生进行分组唱、轮唱、领唱、合唱的方式进行互动一下,培养学生的协作能力。最后,让学生在深情的音乐中结束课堂。最后一方面板书的设计上分析:把歌曲的题目、复杂的节奏、歌曲的情绪、速度简洁的在教学的过程中板书出来。
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。