一、说教材《按比分配》是人教版6年级上册4单元第3节的内容,是在学生学习了比的有关知识的基础上进行教学的,是前面比的相关知识的应用。教材按问题解决的三个步骤编排,旨在使学生经历问题解决的完整过程,尤其是养成审题和反思的习惯。二、教学目标根据课程标准的相关要求和学生已有的知识基础和认知能力,确定以下教学目标:1、通过解决典型问题,了解比在生活中的广泛应用,理解按一定比来分配一个数量的意义。 2、通过分析、讨论、归纳等方式,掌握按比分配应用题的解题思路,能解决一些日常生活中的问题。 三、教学重难点: 本节课的教学重点是掌握按比分配应用题的解题思路。教学难点是运用分数乘法来解决按比分配。
二、说教法学法:学生的学习过程是一个主动建构的过程,教师要激活学生的先前经验,激发 学习热情,让学生在经历、体验和运用中真正感悟知识。在动手中引导学生认识圆,理解圆的特征,有目的、有意识地安排了让学生折一折、画一画、量一量、比一比等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用心去辨析同学们的答案。教学中理应发挥学生的主体作用,淡化教师的主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,总结规律,从而主动获取知识。本节课我采用了多媒体教学手段,主要运用操作、探究、讨论、发现等教学方法。学生的学法与教法相对应,让学生主动探索、主动交流、主动提问。通过多媒体的直观演示将演示、观察、操作、思维与语言表达结合在一起,使学生对圆有一个形象的感知。同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。
一、教材分析《扇形统计图》这一内容选自于人教版义务教育课程标准实验教科书小学六年级上册数学第七单元。有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到统计的实用价值。二、教学目标1、知识与技能认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。2、过程与方法经历扇形统计图的认识过程,体验直观观察学习的方法。3、情感态度与价值观在学习活动过程中,体验数学知识与日常生活的密切联系,激发学生的学习兴趣,培养学生分析、比较、想象的能力,受到科学观的教育。
二、学情分析六年级学生喜欢各种各样的探索活动,他们希望能够在活动中自己去研究事物、发现问题,更渴望能在研究活动中解决自己的疑问,从中获得成功的喜悦。结合学生的实际特点和教学的主要内容,本节课我着重通过开展丰富的探索实验活动,发展学生的学习能力。三、教学目标根据以上结构特点的分析和学生的认知规律,确定了本节课的教学目标如下:(1)知识目标:使学生理解圆周率的含义,在体验圆周率的形成过程中,让学生发现、总结和运用求圆周长的计算方法。(2)能力目标:通过引导学生探究圆周率的形成过程,培养学生动手操作的能力和解决简单的实际问题的能力。(3)情感目标:培养学生勇于探索、积极思考、团结协作的良好行为习惯,让学生在学习中体验数学的价值。另外,通过对有关资料的了解,增强学生的民族自豪感。四、教学重难点和关键我确定本节课的重点是:推导圆周长的计算方法。教学难点是:学生以合作实践,讨论交流的方式探究圆周率的含义。
4.学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。四、说教学目标知识目标:理解和掌握圆面积的计算公式,能应用公式解决实际问题。能力目标:进一步培养学生合作探究、分析概括,以及迁移类推的能力。情感目标:通过演示、操作,进一步让学生体验到数学来源于生活,又服务于生活的理念;唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
(一)教学内容:教科书数学一年级上册第19-20的内容及练习二的第8-10题。(二)教材所处地位及作用:“几和几”数的组成知识是学习加减法的基础,这是一年级教学要注意的部分。在认数教学中,主要通过实物演示和动手操作的游戏,使学生知道了数的组成。(三)教学目标、重点、难点:教学目标:(1)使学生通过动手操作掌握5以内数的组成。(2)使学生能熟练地说出5以内数的级成,培养学生的观察、操作、表达能力,初步的自学能力。(3)培养学生认真做练习的良好习惯,积极动脑思考的学习品质及互助,创新意识和评价意识。教学重点:让学生通过动手操作掌握5以内数的组成教学难点:引导学生通过动手操作并掌握5以内数的组成。二、说教法本课时教学方法主要体现以下几点:1、创设游戏充分感知,然后再交流,使学生在主动参与知识的形成过程中体验到成功的快乐。最后,为学生创设了“分小棒”等游戏,让学生不断地动手操作与合作讨论中自己掌握知识,并初步培养学生的自学能力。
[设计意图:心理学研究表明低年级学生注意力集中时间较短,兴趣容易转移,针对这一特点,出示学生情有独钟的小动物,增加情趣性,充分激发学生的兴趣,形成探究的欲望。这种疑惑,正蕴含着不解、猜度以及思维的发动;这惊奇,则蕴含着求索、发现以及对思维的刺激。至于哪种积极的探究欲望,可使学生获得想象力和猜度的乐趣,维系发现和创造的信心。通过讲讲练练,既抓住了重点,又突破了难点。]4、回忆总结,系统建构请学生回答做连加时该提醒小朋友注意什么?最后师生共同小结。[设计意图:培养了学生口头表达能力,便于教师及时掌握情况,收取反馈信息,加深理解。促进学生的思维由具体形象逐步向抽象的逻辑思维过渡。](三)巩固强化,拓展思维1、基本题:(1)集体练习,摆一摆再填数,通过操作学具,巩固连加知识。(2)看图列连加算式计算。
教材说明:连加法是在学习100以内加减法的基础上进行教学的,是前面所学计算方法的综合练习。通过这一部分内容的学习,可以进一步巩固所学的100以内的加减法,提高计算能力。教学目标:1.掌握连加法的运算顺序和用竖式计算的书写方法。2.进一步巩固100以内的加法,提高计算能力。3.培养书写工整、计算认真的好习惯。教学重点:根据情境,正确列出连加法算式,并用竖式进行计算。明确连加法的意义。教学难点:掌握连加法竖式的写法,明确要用前两个加数的和加第三个加数。教学流程:以下分四个板块进行。一、知识迁移。口算练习题:1.两个一位数相加(9+7=8+6=8+7=)2.三个一位数相加(8+9+5=2+9+4=6+5+7=)【设计目的】:两位数加两位数在计算时,归根结底是两个一位数的计算,所以课前的练习有利于学生提高计算准确性,巩固计算顺序
1、找一找出示七巧板图,设疑:图中你能找出几个梯形?这个梯子最多能达到多高的高度?(见课件)2、拼一拼:①利用两个完全一样的梯形,拼出一种你熟悉的图形。②利用多种梯形图片,摆出一种最喜欢的图案。创设问题情境,深化思维层次,构建知识体系1、通过活动,培养学生创新意识和审美情趣,充分体现“玩中学,学中玩”的新课程理念。2、教会学生在活动中运用新知、拓展思维、加深认识,增强了学生的参与意识和主体意识。3、在拼摆中渗透转化思想,为梯形的面积推导作铺垫,构建新知学习的立体框架。五、交流评价,总结升华1、小结全课:谈谈你的收获及感想。2、集体评价:自评、互评自己在本课中的表现。完善知识结构,训练思维品质,升华发现能力①通过人性化语言,体现以人为本思想。②引入互动评价方法,交流活动感受,形成自我反馈机制。
最富趣味的是荷兰艺术家埃舍尔,他到西班牙旅行参观时,对一种名为阿罕拉的建筑物有很深的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺了种类繁多、美仑美奂的马赛克图案。Escher用数日的时间复制了这些图案,并得到了启发,创造了各种并不局限于几何图案的密铺图案,这些图案包括人、青蛙、鱼、鸟、蜥蜴,甚至是他凭空想象的物体。他创作的艺术作品,结合数学与艺术,给人留下深刻的印象,更让人对数学产生了另一种看法。欣赏埃舍尔的艺术世界:2、动手创作。(小小设计师)看了大艺术家的作品,你现在是不是也有了创作的冲动?下面,请你选一种或几种完全一样的图形进行密铺,可以自己设计颜色,比一比,谁的设计更美观、更新颖。(交流,展示)四、总结:谈收获体会我们今天只是研究了一些规则图形的简单的密铺。生活中还有各种各样的密铺现象。同学们可以到生活中去观察,也可以上网浏览。
密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
(教师要深入各个小组中,参与学生方案的制定,但教师不是决策者,决策权在学生手中。)【设计意图:练习设计围绕本节课的教学目标,具有层次性。同时,开放性练习的设计——采用小组合作,让学生设计购书方案,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养了学生自觉应用数学的意识。】五、课堂总结。同学们,通过这节课的学习,你有什么感想?你们今天的表现都很出色。其实生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家能做个有心人!教学设计自我评析:新课程标准指出:“数学源于生活、寓于生活、用于生活。教师应重视从学生的生活经验和以有的知识中学习数学和理解数学。”
(二)合作交流,探究新知出示例题。(小黑板)先全班同学读题,教师在解释说明题目中“存定期一年”表示什么意思。一般来说,存款主要分为定期、活期等储蓄方式。所谓活期存款是指储户可以随时提取的一种方式;定期存款是有一定期限的一种存款方式,定期存款又分为整存整取和零存整取等形式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年的等等。(让学生在议一议、说一说的基础上,说出自己是怎样想的,交流归纳对问题的认识,理解存款的定期、活期的年月限即时间,以及存款方式。)小丽存的是“定期一年”,即小丽在银行存的100元在一般情况下要在银行存一年,如果有特殊情况也可以提前提取。下面请同学们合作交流,思考如下几个问题。(出示投影片。)(1)你猜一猜,小丽把100元存入银行叫做什么?(本金)(2)你估算一下,小丽把100元存入银行,定期一年,全部取出,取出的钱会大于100元吗?为什么?
一、说教材小数乘以小数的原有基础是整数乘整数、小数乘整数。它为小数除法、小数四则混合运算和分数小数四则混合运算学习奠定基础,占据着重要的地位。小数乘小数是五年级上册第一单元小数乘法的难点和关键,一共涉及三个知识点,1.确定积小数点位置;2.积位数不够时添“0”补足;3.小数连乘的探究。第一课时是根据整数乘法算出积后来确定积的小数点位置,不涉及积位数不够时用0来补足的知识。本课时的关键在于理解算理,归纳算法。根据以上的分析及新课程标准的要求,考虑到学生已有的认知结构,对整数乘法算理的掌握,能对小数乘整数积小数点的定位,制定以下的教学目标:知识与能力:共同探讨,理解并掌握小数乘小数的算理及算法;过程与方法:在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想;
一.教学内容。我今天说课的内容是新人教版教材小学数学六年级上册第一单《分数乘法》例5《小数乘分数》。这部分是教材新增加的内容,用一课时进行教学。二.说教材。1.教材分析本部分的教学是在学生掌握了整数乘法、小数乘法、分数乘法、以及整数和小数混合运算、简便计算的基础之上进行的教学。教学中不仅涉及到分数与小数的互化,假分数与带分数的互化,整数与分数的互化,而且对如何判断一个分数是否能化成有限小数等知识都会涉及。通过教学本例题要使学生经历探究计算方法的过程,运用多样化的解题思路开拓学生的计算思维,提高学生的计算能力。为教学例6、例7的分数混合计算和简便计算奠定基础。
材料二董仲舒强调用孔子之术来统一思想。他主张:凡是不属于儒家经典、不合乎孔子思想的,都应该禁止传授,不能让它们与儒家思想一同发展。这样,那些歪理邪说就被消灭了,然后国家法律规章就更加明确了,百姓就知道该怎么做了。(2)根据材料二结合所学知识,概括董仲舒提出了什么建议?(2 分)他提出这一建议的目的是什么?(1分)
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。