二、防范为主,警钟常鸣 幼儿年龄小,来到幼儿园就是我们的孩子,孩子的安全是健康学习生活的首要条件。作为一名教师,要时常向自己敲响安全的警钟,从幼儿入园的一瞬间就要时刻排查有可能出现的安全问题,如晨检中是否有孩子带了不安全的物品入园,哪一个孩子身体不舒服,需要多加关注,午休时要特别叮嘱值班的教师,做好交接班工作,是否有孩子穿了不适合运动的服装等等;带孩子户外活动,要提前检查玩具的安全性。
二、教学重点: 1、在诵读中悟人生哲理,增强审美能力。 2、开放式教学:有词朗诵、配乐美文欣赏、唱诗词。 三、教学准备: 1、学生背诵印发的小册子中的内容。 2、学生背诵《满江红》《少年中国说》 3、学生学唱《水调歌头》。
2.发展幼儿的观察力,培养幼儿简单的推理能力。 3.感知十二生肖所包括的12种动物、十二生肖的排列顺序,感知、了解十二生肖一年一种属相,12年一个轮回的规律。 活动准备: 1.教具:自制生肖钟、山洞大山的图片。 2.学具:蛋糕盒制作的钟面、十二生肖的图片.胶水等 3.知识准备:幼儿认识时钟。 活动重点:幼儿知道十二生肖的排列顺序。 活动难点:知道十二生肖每12年轮回一次。 活动过程: 一、导入 出示生肖钟,引出课题,激发幼儿兴趣。 二、展开 1.了解十二生肖的12种动物,简单的感知其排列顺序,理解其含义。 (1)请幼儿说出钟面上有多少种动物,为什么?我们来数一数,看看是不是12种。从哪开始数呢?老鼠第一?谁第二?谁第六?小兔第几? (2)小朋友当中有没有属“小老鼠”的?为什么说自己是属“小老鼠”的?(引出“属相”一词,丰富幼儿词汇)小朋友还知道有什么属相?
设想与构思一、 设计与构思1、什么是宽容2、宽容的意义3、宽容的原则4、自省自查二、 准备过程1、 由班长负责,组织班干部讨论实施方案,确定主题和主持人。2、 主持人根据实施方案,把意图告诉同学,动员大家积极参与并有所准备。过程及内容一:导入:同学们,你想拥有朋友吗?你想拥有一个和谐,良好,舒适的学习生活环境吗?你想拥有温馨,融洽,亲密的人际关系吗?你想将来学业有成吗?那么请你学会宽容。
2、目标定位:根据大班幼儿年龄特点及实际情况以及布鲁纳的《教育目标分类学》为依据,确立了认知、能力、情感等方面的目标,融合了语言、科学、社会、艺术领域的整合。目标为:(1)通过各种方法引导幼儿发现自己的成长与变化。(2)激发幼儿欣赏自己的成长,展示自己的能力,树立自信心。(3)乐于与同伴交流、分享自己成长的快乐。(4)让幼儿尝试制作个人成长册,发展幼儿的精细动作。(5)让幼儿体会父母的辛苦、关心,增进亲子之情。 根据目标,我把活动重点定位于:感受“我长大了”,主要是发现自己成长与变化。通过观察、比较小时候的照片和用品、播放录像、交流分享、展示自己,使活动得到深化。活动的难点是:根据人的成长过程进行排序、制作个人成长册,主要是通过自主操作,在动手的过程中培养手部肌肉的灵活性和提高排序的能力,对自己的成长充满了期待。在目标定位上,树立了目标的整合观、科学观、系统观,各领域内容有机联系,相互渗透,注重综合性、趣味性、活动性,寓教育于生活、游戏中。因此,我作了以下活动准备:(1)空间准备:幼儿小时候的照片、衣物、用品布置于墙上,桌椅呈同字型便于评价和集中。(2)物质准备:“人的成长过程”图片,卡片纸、彩笔、彩纸、剪刀、胶水等美工材料与工具若干,已制作本领树的树干,小时候的录像(或小中班在园的录像),胎儿的生长发育以及新生儿的养育的录像。(3)知识准备:幼儿向家长了解爸爸妈妈的故事及自己小时候的趣事,观察各个阶段自己成长的照片,熟悉人物主要特征。
其一,心理与环境的统一性。正常的心理活动,在资料和形式上与客观环境具有一致性。 其二,心理与行为的统一性。这是指个体的心理与其行为是一个完整、统一和协调一致的过程。 其三、人格的稳定性。人格是个体在长期生活经历过程中构成的独特个性心理特征的具体体现。
团长助理:协调部门开展各项工作,编写和管理团队资料,做好团内统计、记录工作,增进团内和谐,及时沟通与交流并时常归纳建议,及时传达任务与通知。 宣传部:务必做好本团各类活动的网络宣传。做好网络招募的宣传,在各社交网上应有积极互动。制作活动宣传海报,支教视频,相册,收集并发表支教日记(可与教务部合作),以及其他力所能及的宣传方式。 人事部:负责团队支教的志愿者招募及选拔,保障支教活动人员充足,招募策划可与团长助理协同完成,在QQ群上的招募工作已经专门划分给人事部,为了使你们对志愿者有更直接和全面的认识。 教务部:负责团队支教活动的人员分配工作,协作讨论形成实地支教计划,组织进行支教前人员培训,记录支教生活,每次支教每个支教点最少要有两篇支教生活记录、感悟或实践报告。 二、各部门工作细则 (一)、团长 .团长在进入招募期后,应与时刻与支教点主要负责人保持联系,认真选好地点,尽可能保证整个团队支教地点的安全。 2.团长要定期和团长助理,各部门主管、成员开会,及时了解团内活动进程,安排部署,统筹规划。 3.团长负责监督团内所有事务活动的展开,并及时督促。
一、思想上 一年来,我时时处处不忘加强思想政治学习。严格要求自己,处处做同志们的表率,发挥模范带头作用。一年来,我从不因故请假,迟到,旷工。不怕苦,不怕累,总是以百倍的热情投入到工作之中。 二、工作上 一年来,我服从学校领导的分配,认真完成学校交给的各项工作任务。在教学中,我虚心向老教师请教,认真钻研新大纲、吃透教材,积极开拓教学思路,把一些先进的教学理论、科学的教学方法及先进现代教学手段灵活运用于课堂教学中,努力培养学生的合作交流、自主探究、勇于创新等能力。另外,本人在搞好教学工作的同时,还很注重教学经验的积累。发表教学论文1篇。 在搞好工作的同时,我还不忘与同志们搞好团结,尊敬领导及同事,真诚的对待每一位同志。 在这一年的工作中,我得到了学校领导,教师们及学生们的好评。但是,检查起来,所存在的缺点毛病也是不少的,还需今后努力改正。主要缺点还有以下几个方面:一是理论知识的学习还是欠缺,还存在有懒惰思想;二是工作虽然很努力,可是个人能力还有待提高,学生成绩进步不是很快。今后,我一定在校领导及全体同志们的帮助下,加强学习,提高工作能力,使自己的思想和工作都能更上一个台阶!
二、说教学目标? 1.读读记记“粼粼、肆虐、盘踞”等词语。?2.有感情地朗读课文,了解课文内容。? 3.理解含义深刻地句子,感受老农改造山林、绿化家园地艰辛和决心。??三、说教学重难点1.理解老人所创造的奇迹,感受老人改造山林、绿化家园的艰辛与决心。????? 2.体会“青山不老”的真正含义。激发学生热爱地球,保护环境的思想感情。四、说教法学法?《新课标》关于阅读教学中提到:阅读是学生个性化行为,不应该以教师的分析来代替学生的阅读实践,应让学生在主动积极的思维和情感活动中加深理解和体验,有所感悟和思考。我将此作为自己教学的指导思想,将此理念贯穿渗透在本节课的教学中,来制定教学方法。所以在教学中主要让学生通过自读来学习课文,以读代讲,抓住重点词语感悟法,放手让学生进行质疑、讨论、交流。从而培养他们的阅读能力、提高他们语文学习质量。
目标:1、 目标:1、尝试把物品夹在下肢不同位置练习行进跳,体验下肢不同力量的运用。2、体会游戏的快乐。材料:饮料瓶、纸板、布球若干。场地: 场地布置:在长方形空地的四个角分别布置商店、小猪的家、小兔的家和小袋鼠的家过程:(一)导入以游戏《石头、剪刀、布》为活动做准备。(二)基本部分1、教师扮演袋鼠妈妈:“孩子们,天气这么热,咱们买些饮料回家好不好?”启发幼儿用下肢夹住饮料瓶行进跳。用角色口吻提醒幼儿夹稳。
1、交流与发现为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?方法1:调查学校田径队的30名同学;方法2:调查每个班的男同学;方法3:从每班抽取1名同学进行调查;方法4:选取每个班级中的一半学生进行调查.通过前面的活动,学生亲身经历了一次数据的调查过程,并通过对所得数据的计算和分析,了解了自己在家干家务活的时间所处的位置和水平,在调查过程中体会到调查方便有效的重要性.接下来,就能很好地解决交流与发现中的问题.师生共同讨论完成交流与发现.
学习过程:一、自主预习课本P175——186的内容,独立完成课后练习1、2、3、4、5后,与小组同学交流(课前完成)二、回顾课本,思考下列问题:1.SAS定理的内容2.ASA定理的内容3.SSS定理的内容4.几何证明的过程的步骤
活动内容:① 已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.
随着互联网自媒体的兴盛,不少人为了引起关注,吸引“粉丝”使出浑身解数。有人攀爬城市高楼,做出各种惊险动作,以赢得点击量;有“14岁荣升宝妈”的少女,靠展示自己的肚皮,获得打赏;9岁女孩在抖音发哭诉视频:“今天妈妈火化了,我再也见不到她了,求求你们,就给我一万个赞可以吗?”;有农村青年直播生吃青蛙、老鼠以求转发;有父亲虚构家庭处境,靠“卖惨”为“重病女儿”筹款……一个比一个奇异,一个比一个惊悚。
【例3】本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.【答案】见解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因为p是q的必要不充分条件,所以q?p,且p?/q.则{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范围是(0,3].解题技巧:(利用充分、必要、充分必要条件的关系求参数范围)(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.跟踪训练三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,求实数a的取值范围.【答案】见解析【解析】因为“x∈P”是x∈Q的必要条件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范围是[-1,5].五、课堂小结让学生总结本节课所学主要知识及解题技巧
本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一, 它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.A.正确理解充分不必要条件、必要不充分条件、充要条件的概念;B.会判断命题的充分条件、必要条件、充要条件.C.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.D.在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.
等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小. 3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
6. 例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC又PC在平面PAC内,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β8. 探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。