中班:通过观察自己由小到大的变化感知每个时期都有一定的特点,帮助幼儿树立积极的自我意识,形成初步的自尊。大班:使幼儿知道自己不但会长大,本领也越学越多,还有着与别人不同的特长、爱好,鼓励幼儿在集体面前表现出来,促使孩子产生满足感和充实感,树立自信。(二) 设计活动 1、 通过教师和幼儿共同准备,收集物品,提高幼儿的兴趣,在积极、主动投入的过程中感到自己长大了,增强幼儿的自我意识。 在中班“我会长大”活动中,我们让孩子同父母老师共同收集不同时期的衣服、用品、照片、录像片、出生时的宝宝卡……这些反映了幼儿成长的状况,在准备收集的过程中让孩子感到:我从婴儿长到现在,从只会吃奶到现在能自己吃饭;从要大人抱着到现在会跑步、拍球;从小时候处处要大人照顾,到现在会自己穿衣叠被,从这些具体的感知中,幼儿体验到自己在长大,个子在长高,本领也越学越多,以后还会长大,还要学更多的本领。 2、 在系列活动“我长大了”中,教师应抓住有利契机,向幼儿进行正面的、积极的影响,让幼儿对自我开成正确认识,逐步学会评价自己。 在大班活动中,幼儿继续讨论自己在渐渐长大,身体、能力也在发生变化,更重要的是除了外貌与别人不同,自己还有许多与别人不同的长处,教师要在日常生活中注意观察,和幼儿一起发现他们的长处,给幼儿以表现的机会,孩子们通过竞赛看到自己叠被子、系鞋带比别人快、好,通过表演和展示作品,让大家看到自己的绘画好,表演朗诵比别人强等,通过情景再现让幼儿看到自己的特长,在进行上述种种活动中,增进了孩子对自我的积极体验,使他们进一步对自己有所认识,从而增强对自己的信心。
一、教学性情境 活动名称:交朋友 活动要求:让幼儿学会用友好的态度对待别人,当别人不接受自己时,会想办法让别人喜欢自己。 活动准备:木偶剧表演,课前学习表演《拉拉勾》。 活动指导: (一)创设情境《哑巴老虎》,幼儿观察交流。 1.小动物们愿意和老虎威威交朋友吗?为什么? 2.老虎威威想了一个不说话的办法来跟小动物们交朋友,你们想一想不说法这个办法好不好?为什么?(可用表情、动作,好听的声音)(幼儿尝试)。 3. 除了用这些方法交朋友,还有什么好办法能交朋友?(幼儿商量,教师巡迥指导)。
2、通过让幼儿尝试仿编散文,激发幼儿爱他人的情感。 设计思路:本次活动虽无只接表达母亲与孩子之间的爱意,但朴实的字里行充满着“大人与小孩”之间那种相互依偎,相互关心、形影不离的添犊之情。她能唤起幼儿潜意识中与妈妈之间的那份亲密的情感。 本次活动着眼于体验妈妈与孩子之间的相互依偎的情感并鼓励幼儿模仿散文中的对话,有表情地表述。在活动中,通过课件欣赏,渲染气氛,激发情感、强化语言诉感染力,通过理解欣赏、讨论,培养幼儿大胆、响亮地说话创设自然、有趣的教育情景。活动流程:欣赏——熟悉对话——创编诗歌——幼儿讨论幼儿准备:课件(大树妈妈)过程:
2、学习在指定的范围内拼贴小纸片,掌握拼贴技能。 3、发现撕贴画的特殊效果,从而产生对撕纸活动的兴趣。活动准备: 收集各种各样的彩色挂历纸。幼儿用书人手一册。浆糊。活动过程: 1、引导幼儿观察幼儿用书中的撕贴画,激发幼儿对撕贴画的兴趣。 画面上有什么?它和我们以前的画画有什么不同?这只苹果和梨子是用什么做的?感知撕纸画特有的风格,激发幼儿产生撕纸画的欲望。 2、教师示范讲解撕纸画的具体要求。
活动准备:与中三班教师约定好时间。活动过程:一、讨论怎样做哥哥姐姐。1、我们长大了,当弟弟妹妹来我们大三班做客时我们应该怎样做小主人?和他们一起说些什么话?有什么本领要教他们?二、实践活动:1、热情大方迎接弟弟妹妹。每位幼儿邀请一位弟弟或妹妹到自己身边,做自我介绍,互相熟悉。
二、 活动目标1、 让幼儿知道长大了应该自己的事情自己做。2、 培养幼儿的自我服务意识。3、 锻炼幼儿的语言表达能力。三、 活动重难点1、 培养幼儿的自我服务意识。2、 教育幼儿自己的事情自己做。四、 活动准备:故事、衣服、音乐
二、重点与难点 1.玩具大家玩。 2.友好地玩。 三、材料及环境创设 1.每人自带一件玩具。 2.大皮球若干(如全班人数)。 3.与大班老师联系,拟定和大班幼儿共同玩皮球的计划。 四、设计思路 现代独生子女家庭的孩子,他们拥有许多玩具,但常常因缺少玩伴而不会与人分享玩具,和别人一起玩。本活动设计,让幼儿将自己的玩具带到幼儿园和同伴一起玩,和大班哥哥姐姐一起玩,在活动过程中,使其体会分享的快乐,并从中激发幼儿交往的愿望,培养幼儿初步的交往能力。本设计仅仅是一种思路。在日常教育中,老师可抓住时机,多设计这类活动,使幼儿在反复的情绪体验中,形成正确的观察。五、活动流程 激发情绪,介绍玩具,看别人玩——体验情绪,和同伴玩,和大哥哥一起玩——形成理念,大家一起玩才快乐
方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.三、板书设计1.用关系式表示变量间关系2.表格和关系式的区别与联系:表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法
解:(1)电动车的月产量y为随着时间x的变化而变化,有一个时间x就有唯一一个y与之对应,月产量y是时间x的因变量;(2)6月份产量最高,1月份产量最低;(3)6月份和1月份相差最大,在1月份加紧生产,实现产量的增值.方法总结:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.三、板书设计1.常量与变量:在一个变化过程中,数值发生变化的量为变量,数值始终不变的量称之为常量.2.用表格表示数量间的关系:借助表格表示因变量随自变量的变化而变化的情况.自变量和因变量是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.本节是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来
方法总结:绝对值小于1的数也可以用科学记数法表示,一般形式为a×10-n,其中1≤a<10,n为正整数.与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数前面的0的个数所决定.【类型二】 将用科学记数法表示的数还原为原数用小数表示下列各数:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小数点向左移动相应的位数即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法总结:将科学记数法表示的数a×10-n还原成通常表示的数,就是把a的小数点向左移动n位所得到的数.三、板书设计用科学记数法表示绝对值小于1的数:一般地,一个小于1的正数可以表示为a×10n,其中1≤a<10,n是负整数.从本节课的教学过程来看,结合了多种教学方法,既有教师主导课堂的例题讲解,又有学生主导课堂的自主探究.课堂上学习气氛活跃,学生的学习积极性被充分调动,在拓展学生学习空间的同时,又有效地保证了课堂学习质量
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
内容:情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得14521.1x-1200x=20,解得x=6.经检验,x=6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是:第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.
因为反比例函数的图象经过点A(1.5,400),所以有k=600.所以反比例函数的关系式为p=600S(S>0);(2)当S=0.2时,p=6000.2=3000,即压强是3000Pa;(3)由题意知600S≤6000,所以S≥0.1,即木板面积至少要有0.1m2.方法总结:本题渗透了物理学中压强、压力与受力面积之间的关系p= ,当压力F一定时,p与S成反比例.另外,利用反比例函数的知识解决实际问题时,要善于发现实际问题中变量之间的关系,从而进一步建立反比例函数模型.三、板书设计反比例函数的应用实际问题与反比例函数反比例函数与其他学科知识的综合经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程,提高运用代数方法解决问题的能力,体会数学与现实生活的紧密联系,增强应用意识.通过反比例函数在其他学科中的运用,体验学科整合思想.
三、典型例题,应用新知例2、一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。求两次摸到的球的颜色能配成紫色的概率. 分析:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下:总共有25种可能的结果,每种结果出现的可能性相同,能配成紫色的共4种(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)= 四、分层提高,完善新知1.用如图所示的两个转盘做“配紫色”游戏,每个转盘都被分成三个面积相等的三个扇形.请求出配成紫色的概率是多少?2.设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为 五、课堂小结,回顾新知1. 利用树状图和列表法求概率时应注意什么?2. 你还有哪些收获和疑惑?
补充题:为了预防“非典”,某学校对教室采用药熏消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如右图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围为 ;药物燃烧后,y关于x的函数关系式为 .(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)y= x, 010,即空气中的含药量不低于3毫克/m3的持续时间为12分钟,大于10分钟的有效消毒时间.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。