
解析:(1)先把第二个分式的分母y-x化为-(x-y),再把分子相加减,分母不变;(2)先把第二个分式的分母a-b化为-(b-a),再把分子相加减,分母不变.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法总结:分式的分母互为相反数时,可以把其中一个分母放到带有负号的括号内,把分母化为完全相同.再根据同分母分式相加减的法则进行运算.三、板书设计1.同分母分式加减法法则:fg±hg=f±hg.2.分式的符号法则:fg=-f-g,-fg=f-g=-fg.本节课通过同分母分数的加减法类比得出同分母分式的加减法.易错点一是符号,二是结果的化简.在教学中,让学生参与课堂探究,进行自主归纳,并对易错点加强练习.从而让学生对知识的理解从感性认识上升到理性认识.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.

1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()

解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.

方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.

解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解.解:(1)设正三角形ABC的中心为O,BC切⊙O于点D,连接OB、OD,则OD⊥BC,BD=DC=a.则S圆环=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需测出弦BC(或AC,AB)的长;(3)结果一样,即S圆环=πa2;(4)S圆环=πa2.方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型四】 圆内接正多边形的实际运用如图①,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心(下列各题结果精确到0.1m).(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?

1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(难点) 一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:全等三角形判定定理“ASA”如图,AD∥BC,BE∥DF,AE=CF,试说明:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.

分式1x2-3x与2x2-9的最简公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最简公分母为x(x+3)(x-3).方法总结:最简公分母的确定:最简公分母的系数,取各个分母的系数的最小公倍数;字母及式子取各分母中所有字母和式子的最高次幂.“所有字母和式子的最高次幂”是指“凡出现的字母(或含字母的式子)为底数的幂的因式选取指数最大的”;当分母是多项式时,一般应先因式分解.【类型二】 分母是单项式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先确定最简公分母,找到各个分母应当乘的单项式,分子也相应地乘以这个单项式.解:(1)最简公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最简公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最简公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

1、教师出示《人学通知书》,并提出以下问题:(1)同学们,你们在入学前收到入学通知书了吗?(2)我们每一个人都收到了一份《入学通知书》,我们学校的吉祥物也收到了,看视频回 忆自己的上学心情。2、教师播放歌曲:同学们,我们一起来听一首好听的歌曲。(播放课件:歌曲《上学歌》 板书课题《开开心心上学去》【完成目标一】环节二 共同回忆 感受快乐活动 2 共同回忆,感受快乐小朋友们,你们还记得我们学校的开学典礼吗?你看到了什么?听到了什么?感受到 了什么?【完成目标二】环节三 分享交流 拓展延伸 五、熟悉新环境1、播放课件,谈心情:老师课前准备了学校各处的照片,现在用幻灯片展示给大家看一看。 大家说一说,这么美丽的地方你喜欢吗?你知道可以在这些地方做什么吗?

复习内容说明: 本单元的复习包括本册所学的主要内容:20以内的数, 20以内的加法和10以内的加减法,认识图形,认识钟表,用数学。复习目标: 1.通过复习20以内数的读写、数序、大小、组成和序数的含义,加深同学对数概念的理解。使同学进一步明确加减的含义。 2.熟练口算10以内的加减法,正确较迅速地口算20以内的进位加法。

课堂教学设计说明求比一个数少几的数的应用题是低年级教学的一个难点.为了分散难点,在复习准备阶段做了孕伏.如:圆比三角形多2个,也可以说三角形比圆少2个.为了突破难点,让学生动手摆、动口说、动笔写,全方位地调动学生的各种感官参与教学全过程,使学生在参与学习的活动中领悟出“求比一个数少几的数”的应用题仍然是把较大数看作两部分组成的,从大数中去掉大数比小数多的部分,就是小数与大数同样多的部分,也就是小数的数值.也可以通过“假设同样多”去透彻地理解比一个数少几的实际意义.确实使学生理解和掌握了这类应用题用减法计算的道理和解答方法.为了让学生进一步加深理解和掌握“求比一个数少几的数”的应用题的数量关系和解答方法,在巩固练习的最后设计了一组对比题目.

教学内容:口算乘法教学目标:使学生加深对乘法含义的理解,让学生知道生活中处处有乘法。教学重点:通过观察能熟练用乘法问题。教学过程:一、复习。6×48×59×77×56×89×7二、结合生活情况使学生加深体会乘法的含义。1、教学p68的主题图。(1)、让学生独立观察教科书p68中情境图。思考:①、这幅画面是什么地方?②、你发现了画面中有什么游戏项目。(2)、在小组中互相说说自己观察到了什么内容。(3)、各小组代表汇报。(4)、教师板书学生汇报的数据。(5)、师:根据你们提供的信息(条件),你能提出用乘法计算的问题吗?大家在小组里议一议。2、感知生活中有乘法。(1)、学生汇报。(略)(2)、师:这些活动,你们在哪亲身体验过呢?3、体会生活中的数学问题。师:除以上这些数学问题,你们谁还能提出其他的数学问题,并使用乘法计算?学生通过思考,自由回答。

教学建议:亿以内数的读法是在万以内数的认识基础上进行教学的,主要是让学生用已有的知识去类推,所以在教学本课时我们有必要对万以内数的认识进行有针对性的复习。如可采用口答形式复习数位顺序及各数位之间的十进关系。对于万以内数的读法,可以出示一组数据如:2005年路桥区前两个月共实现农林、渔业总产值17013万元,其中农业产品6383万元,林业产值94万元,渔业产值7560万元。在对万以内数复习的基础上我们再出示第2页主题图,让学生读一读画面上呈现的6个大数,也可以让学生说说身边听到,看到的大数。在这环节中我们就让学生凭着自己的理解运用旧知识去读数。这里学生肯定会造成认知上的冲突,从而引入新课教学。新课时可以按以下环节进行:1、计数器操作,认识计数单位用计数器数数,拨上一万,然后一万一万地数,一直数到九万后,再加一万是多少?认识十个一万是十万,用同样的方法,完成一百万,一千万,一亿的认识。

一..知识目标:学生会认读单词: new, clothes, wear, children, look, young, beautiful2.学生会认读C部分短语:try on, look+adj. 3..学生能运用句型:All right. / What colour is /are...? / It is / They are.../1.能够掌握C部分重点单词new,clothes,wear,children,look,young,beautiful.掌握并运用句型:All right. / What colour is /are...? / It is / They are.../单词:T-shirt, shirt,dress,skirt,shorts,jeans,hat,cap,trousers二.情感目标:2.了解他人的自己和他人的服装颜色,学习正确的审美价值。

(1) 美育目标:通过引导学生初步认识人与自然的关系,激发学生热爱自然,保护绿色生命的情感。(2) 知识目标:鼓励学生大胆地、有个性的用自编故事、绘画方式等去表达对大树的情感。(3) 能力目标:通过本课的学习,培养学生的想象能力、儿童画创作能力、语言表达能力等。

然后能通过图象找出变量的对应关系在图象上的体现。3、做一做:课本P154第1小题,学生在课本上填表,让学生通过填表,体会变量之间的相依关系。4、师生小结:和学生一起对刚才的三个例子进行总结,启发学生思考三个例子的相同点和不同点,如表现形式不同,有图象、表格、代数表达式。相同的有它们都是两个变量,确定其中一个变量后就能相应确定另一个变量的值。从而使学生的认识上升一个高度,并掌握函数的概念5、课堂练习:完成课本P155随堂练习。通过本练习的完成巩固概念并会用概念去判断两个变量间的关系是否可看做函数。6、新课巩固:以填空形式对本堂课进行小结,使学生对函数的概念及应用有一定记忆。并通过对最后问题的思考使学生意识到数学来自生活,并能应用于生活。

接下来学生类比有理数中相关概念,体会到了实数范围内的相反数、倒数、绝对值的意义,并进一步掌握了实数的相反数、倒数、绝对值等知识。学生类比有理数中相关运算,体会到了实数范围内的运算及运算律。并探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小。然后通过相关练习,检测学生对实数相关知识的掌握情况。最后学生交流,互相补充,完成本节知识的梳理。布置作业:所布置作业都是紧紧围绕着“实数”的概念及运用。设计选作题是为了给学有余力的学生留出自由发展的空间。五、关于板书设计我将板书设计为“提纲式”。这样设计主要是力求重点突出,能加深学生对重点知识的理解和掌握,便于记忆。

教学设计说明:本节课从学生接触到的实际问题出发,结合新课程标准的理念,创造性地使用教材而设计的一节课,是前面线段的比、成比例线段等知识在现实生活中的应用. 一开始情境的创设——彩色图片的投影,给学生以美的感觉,激发学生的求知欲.通过实际生活中的例子,让学生自己发表自己的看法,培养学生的审美情趣,又从学生最感兴趣的奥运会的比赛中引出今天所要学习的内容,从而进一步培养学生的爱国主义情感.在教学设计中,充分发挥了学生的主观能动性,通过小组讨论,师生间的合作交流,解决了本节课的重点和难点.让每个学生都能从同伴的交流中获益,同时也培养了学生的合作意识,提高了学生的动手操作的能力.本节课在教学设计中主要运用了引导探究、分组讨论的教学方法;引导学生自主探究、合作交流的研讨学习方式,确立了学生的主体地位.

用你的语言描述一下配方法解一元二次方程的基本步骤和需注意的问题。 教师引导学生进行反思、归纳配方法解一元二次方程的基本思路、步骤及注意事项。巩固对课堂知识的理解和掌握,同时进一步体会解一元二次方程时降次的基本策略和转化的思想。 六、布置作业分层布置作业,既巩固本节主要内容,又有让学有余力的学生有思考和提升的空间。思考题为后面深入研究配方法,完善对配方法的认识做准备。 同时让学生感受到数学学习在实际生活中的作用,感受数学的美。五、板书设计我将板书分成了两部分,重点突出这节课用配方法解一元二次方程的步骤,在配以适当的练习,简单明了,重点突出。六、教学评价与反思本节课我根据学生的特点采用合作交流探究式学西方法教学,让学生动起来,感受数学学习的乐趣。让学生更加爱学数学。

1.多媒体的合理应用,可极大的激发学生的学习兴趣,提高教学效果.在本节课的“情境引入”这一教学环节中,用媒体展示的人影、皮影、手影的精彩图片,用媒体播放的皮影戏、手影戏视频片断给学生以视觉冲击,产生了视觉和心理的震撼,这样在课堂“第一时间”抓住了学生的注意力、极大的激发了学生的学习热情,将十分有利于后面教学活动的开展,提高课堂教学效果.2.附有挑战性的“问题(或活动)”、层层深入的“问题串”可激发学生的探索欲望,培养创新精神,拓展思维能力.在本节课“探究活动”这一教学环节中的“做一做”设计的4个活动,由简单的“模仿”到“创作设计、观察思考”循序渐进、挑战性逐渐增大,不断激发学生的探索欲望,引人入胜,培养创新精神,拓展能力.再如,在本节课“数学运用”这一教学环节中的“例2”设计的2个问题层层深入,现实情境味很浓,学生做起来饶有兴趣.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。