(通过这道题的练习,可以看出中国的汉字是非常美的。谁能举例说出哪些汉字可以写成轴对称图形吗?)(师生共同品味中国文字的对称美,从而宏扬中国文化,做到知识性、技能性、思想性和艺术性溶为一体。)4、配乐剪轴对称图形比赛。请同学们拿出一张彩色纸用对折的方法剪出一个轴对称图形,然后贴在白纸上。并把剪得的作品贴在黑板上让大家欣赏。引导学生观察:哪些图形较美?为什么?五、归纳小结。设问 :今天学了什么?什么叫轴对称图形? 怎样判断轴对称图形? 什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。
【设计意图:先让学生观察、猜想,然后自己想办法“证明”自己的猜想。这样设计,给学生自主思考的时间和空间。在独立思考的基础上,再小组合作,把动脑思考与动手操作有机结合,把独立思考与小组合作有机结合。有利于提高探索活动的实效性。】教师巡视,参与学生的操作和讨论,找出有代表性的几种“证明”方法。3.交流讨论师:差不多了吧?能解释为什么把4个苹果放入3个抽屉,会出现总有一个抽屉中至少放2个苹果这一现象了吗?【学情预设:】第一种:枚举法请学生观察不同的放法,能发现什么?引导学生发现:每一种摆放情况,都一定有一个抽屉中至少放2个苹果。也就是说不管怎么放,总有一个抽屉中至少放2个苹果。第二种:假设法。还有没有用不同的方法来验证把4个苹果放入3个抽屉,总有一个抽屉中至少放2个苹果这一现象吗?
5、计算分析,感受水浪费的巨大师:刚才这位同学说的很有道理,如果我们每个人都不注意节约用水的话,一年浪费的水是巨大的,同学们计算一下,按每个人一年浪费一个水龙头的滴水量计算,全国13亿人一年将会浪费多少方水。生:我反对计算13亿人的浪费情况,因为我们国家很多地方还很穷,根本没有自来水。师:刚才这位同学说的也很有道理,那我们就计算整个深圳人浪费水的情况。据第五次人口普查显示,深圳人口已达800多万,我们就按800万人计算。(学生分组计算)师:谁来说一说你们组计算的情况?生1:我们组通过计算得出,深圳人按这样计算,一年大约浪费2.4亿立方米水。(其他组表示同意)师:谁来形容一下2.4亿立方米水有多少?生:(1)2.4亿立方米水会把我们大家都给淹死了……(2) 们深圳人一年大约需水10亿立方米左右,2.4亿方水占了我们一年用水量的25%了。
这节课的教学内容是在学生学习掌握了圆和圆柱的相关知识的基础上而安排的。认识圆锥,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面的学习做好铺垫。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排在圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。二、说学情我所教学班级的学生是山区的孩子,经过前面的学习他们的主观性和能动性已经有较大的提高,能够有意识地主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高,也有一定的动手操作能力。但抽象逻辑思维在很大程度上仍然靠感性经验支持,加上他们生活在山区,对新生事物的见识面相对较窄,所以在教学时适宜恰当地运用远程教育资源,既能创设教学情境,又能将抽象的知识直观化,更加直观地体验感知圆锥的特征。
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的,圆柱的体积是圆锥的3倍。第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= Sh。第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
多年的小学教学经验告诉我:小学高年级的学生已有一定的自学能力,关键是看我们设置的情景和学生的生活是不是紧密联系,是不是唤起了学生的已有表象,并不和使用多种媒体有绝对联系。所以在学习例题中我引导学生自主探讨,从中发现问题,提出问题,最后独立解决问题,从而训练学生数学语言表达能力,发展学生的创造性思维。⒋质疑问难。㈣新知总结对上面所学知识,教师引导学生作一次归纳总结,让学生明确要求圆周长时,必须设法求得圆的直径或半径。这样使学生对求圆周长有明确的认识,进一步深化重点。㈤新知运用国家教委加强与改进小学数学教学的意见中提出:基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。
3、整理数据,确定思路。在此认知基础上,紧接着引申出进一步研究的问题“各条跑道的起跑线应该相差多少米?”这个问题很难通过观察得到,需要学生收集相关数据,具体分析起跑线的位置与什么有关。使学生在汇报的过程中自然的发现:要确定跑道的起跑线,只要算出每相邻两条跑道的长度差就可以了。有的学生说,由于跑道的直道长度是相同的,所以算出弯道的长度差就可以了。在这里,教师或学生还可就图片说明半圆形跑道的直径是如何规定的,也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题向其它学生作一具体说明。在些环节,让学生进行观察,让他们自己发现规律,培养他们抽象概括能力和语言表达能力,在这个环节中教师要灵活的驾驽课堂,及时的抓住课堂中新生成的问题,使问题得以提升,把课堂推向了高潮.
1、课件出示教材例1的座位图。教师说明分组方法,从左往右依次为第1列、第2列、第3列直至第6列,从前往后依次为第1行、第2行直至第5行。请学生用自己的语言说说张亮的位置,要求尽可能简洁。当多位学生说完之后,教师组织全体学生评价哪种方法最简洁?当学生一直认同第2列第3行是最简洁的描述方法时,教师板书:第2列第3行。学生主动参与,体会最简表述方法的优越性。2、此时,教师再提出你能用这种方法描述王艳的位置吗?赵强呢?及时反馈,利用最简方法描述其他两位同学的位置。3、让学生完成一个记录游戏:教师快速地报出第几列第几行,让学生记录。学生可能记录不下来。这时教师提出我们要进一步简洁,不用文字,用数字和符号把它的位置记录下来。通过游戏使学生感受到“数对”产生的必要性。学生用自己的方式填写,教师可以选取几位代表在黑板上写,然后提出这些同学记录方法不一样,但有什么相同的地方?引导学生观察发现都有数字2和3,都表示第2列第3行,
学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)
一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
然后我让自主尝试探索末尾有0有乘法,然后让学生自己上台来给大家展示各自的算法,并讨论比较那种算法更简便,从而总结出末尾有0的乘法列竖式的简便方法。为了解决这节课的重点和难点,我在这个环节里又有针对性的设计了两个练习,一个是0和非0的对位,还有一个是积末尾补0。在教学因数中间有0的乘法,因为学生有了前面的基础,所以我直接让学生在两个问题中选择一个解决。重点强调了因数中间0不能漏乘。在练习方面,我设计了看谁的眼睛亮,通过找错误,学生练习时,老师观察到有共性的的错误,通过视频展示台,让学生来寻找错误,再次突破本课的重点。一题是360×25因数末数一共有一个0,而积的末尾应该有三个0。让学生进行讨论,再一次让学生体会了积末尾0个数确定的方法。在巩固和拓展联系环节,设计了闯关游戏,先是基本的计算练习,接着是因数末尾0个数的判断和解决问题的联系,通过练习,巩固竖式的简便写法,提高学生的计算能力。
教法、学法分析我通过阅读教材、教参和新课标,分析学生学习状况,认为对这一教学内容理解起来比较容易。所以,在教学时我准备采取以下策略:1、放手让学生自主解决问题,尝试计算例7的1、2题。再通过学生口述计算过程,教师设问、强调重点使学生掌握本节课知识。2、通过学生反复叙述算理,培养学生口头表达能力,并使他们自主探索“被除数中间或末尾没有0,商中间或末尾有0”这一知识形成的过程。教学目标1、在熟练掌握一位数笔算除法法则的基础上,会正确计算商中间或末尾有0的除法的另一种情况。2、能熟练地进行商中间有零和末尾有零的除法,形成一定的笔算技能。3、能结合具体情境估算三位数除以一位数的商,增强估算的意识和能力。
2重点难点教学重点了解我国古代建筑的外观造型、建筑结构、群体布局、装饰色彩。教学难点对我国古代建筑的欣赏感受能力,能够从外观、结构、布局、装饰、类别来欣赏祖国古代的建筑艺术。3教学过程3.1 第一学时教学活动活动1【导入】观察建筑,点出建筑(设计意图:了解建筑的基本特点)1、同学们,我们坐在什么地方?(教室)2、让我们来观察一下,它都有哪些部分组成?(墙壁、天花板、地面、门窗)3、还有什么地方有这些特点?(电影院、家… …)4、 [课件1:现代建筑]这些都叫做“建筑”。(板书)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。