1、课件出示教材例1的座位图。教师说明分组方法,从左往右依次为第1列、第2列、第3列直至第6列,从前往后依次为第1行、第2行直至第5行。请学生用自己的语言说说张亮的位置,要求尽可能简洁。当多位学生说完之后,教师组织全体学生评价哪种方法最简洁?当学生一直认同第2列第3行是最简洁的描述方法时,教师板书:第2列第3行。学生主动参与,体会最简表述方法的优越性。2、此时,教师再提出你能用这种方法描述王艳的位置吗?赵强呢?及时反馈,利用最简方法描述其他两位同学的位置。3、让学生完成一个记录游戏:教师快速地报出第几列第几行,让学生记录。学生可能记录不下来。这时教师提出我们要进一步简洁,不用文字,用数字和符号把它的位置记录下来。通过游戏使学生感受到“数对”产生的必要性。学生用自己的方式填写,教师可以选取几位代表在黑板上写,然后提出这些同学记录方法不一样,但有什么相同的地方?引导学生观察发现都有数字2和3,都表示第2列第3行,
(这一环节由学生熟知的典型事例入手,让学生感受到数学与生活的密切联系。把用数描述事物和用图描述事物整合在一起,使学生体会用图描述事物直观性的同时,建立数与形之间的联系,发展抽象思维。让学生通过自主探究、合作交流的学习方式来突破本节课的教学重点,鼓励学生说出自己的意见,并且通过多元化的评价激发学生的学习兴趣。)(三)及时练习课本103页练一练第一题让学生自主完成,填充空白统计图。提示学生标注名称和数据。(这一环节让学生体会数学在生活中的应用)(四)拓展延伸。观察两幅扇形统计图,回答问题。(这一环节给学生充分讨论交流的时间,让学生在讨论中互相补充,在讨论中不断完整自己的知识。让学生加深对扇形统计图的理解,理解单位一未知,无法根据百分比判断部分量的大小)(五)总结评价:
学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)
(二)归纳小结。设问:今天学了什么?什么叫轴对称图形?怎样判断轴对称图形?什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)现在能把两侧大小不同的蝴蝶图画成一模一样吗?(教师拿着新课引入时的不对称的蝴蝶图)(前后呼应,解答课前疑难,目的是检查学生活用知识的情况。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。附板书设计:轴对称图形如果一条图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
二、教法运用分数在日常生活中经常出现,但学生对它的认识却各不相同。新课程标准视学习为“做”的过程、“经验”的过程,凸现学生学习的实践性特点。因此,本课的设计力求在教法上体现“在玩中学,在做中学,在合作交流中学”的思想。本节课以引导发现法为主,综合运用多种教法,创设有利于学生参与探索活动的学习环境,帮助学生学习分数的有关知识,实现促进学生能力发展的教育目标。三、学法指导在学法上则突出“自主学习,实践感知”的特点,加强数学实践活动,让学生主动建构数学知识。学生对数学知识的学习,不是被动接受,而是主动建构,而动手操作对学生的建构有着积极的促进作用。让学生在动手、动脑、动口的过程中实现知识的迁移类推,主动建构数学知识。
一、教材分析及学生分析:数学课程标准在各个学段中,安排了“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”四个学习领域。其中“统计与概率”中统计初步知识在一、二年级已经涉及,但概率知识对于学生来说还是一个全新的概念,它是学生以后学习有关知识的基础,并且概率问题是一个与社会生活关系密切的重要问题。因此在第一学段中对于“不确定现象”由感性升华到理性认识非常重要。对于三年级的孩子来说,由于他们的年龄和思维特点,他们一般只能在感性的层面理解可能性的知识,因此,在教学中,我们密切关注并考虑学生已有的经验知识,在学生已有的经验体会的基础上,设计各种活动丰富学生的经验积累,从而进行可能性知识的构建。
一、说教材这节课主要是使学生进一步认识钟面和掌握看钟表的方法,认识时间单位时和分,和孩子一起探究出时和分之间的进率是60,会认读几时几分。进一步建立起时间观念。根据学生已有知识经验和数学认知的特点,本节课拟定了以下三个维度的教学目标:1、(知识)认识钟面及时间单位“时”和“分”,初步体会“时”和“分”的实际意义,理解1时=60分;2、(能力)结合具体的生活情景,会认读钟面上的时刻;培养学生观察、分析、比较的能力3(情感)建立时间观念,培养学生主动探索的精神和合作学习的能力。教学重点:认识钟面及时间单位“时”和“分”,初步体会“时”和“分”的实际意义,会认读钟面上的时刻。教学难点:时间单位比较抽象。理解1时=60分。认读几时几分。二、学生分析学生天天跟时间打交道,也已经会认整时,但时间单位不像长度单位、质量单位那样容易用具体的物体表现出来,比较抽象,再加之相邻时间单位的进率是60,所以建构起来是有些难度的。
2、综合训练这道题的关键是,让学生理解木料的段数相当于排在两端的物体,锯的次数相当于排在中间的物体。这是对基本规律的联想和深化,提高了学生应用知识解决问题的能力。3、拓展训练我再次请出5位女生,围成一圈,要求两个女生中间站一个男生,又可以站多少个男生呢?引导学生认识到围成一圈时,间隔排列的两种物体的数量是相等的。这样的游戏设计,化直为曲,使学生体会到在直线上的间隔现象与封闭图形的间隔现象之间的联系与区别,体会规律的发展变化,从而提升了规律。最后进行课堂总结,布置一个实践性作业运用课上找到的规律,结合生活实际,做一个小小的设计。(如用彩灯布置教室,用美丽的图案打扮自己的卧室,设计美观大方的广场,设计有创意的游戏等。)通过布置开放性的作业,进一步把所学的知识和现实生活联系起来,培养学生的创新能力,使学生体验数学的价值。
1、出示第78页例3,创设开运动会买矿泉水的情景,激发学生的学习兴趣,同时也对学生提出了要求,“谁能提出一个用乘法计算的数学问题,你会编一道应用题吗”。既培养了学生的观察能力,又让学生在具体的情境提出问题,直观地感受到生活中处处有数学。2、学生看图后能正确列式:24×9=3、学生尝试计算,计算过程中遇到困难,可以同桌商量着完成.同桌互查,反馈信息。指名板演,说出计算的顺序和过程,集体订正.这题的计算完成了吗?为什么?(还得在横式的等号后填上得数和单位)。以此培养学生观察仔细,办事严谨、认真,从不敷衍了事的好作风。6、小结:从多位数的个位乘起,个位满几十就要向十位进几,十位的积要加上进上来的数,又要向百位进位.(三)巩固练习1、完成教材下面的"做一做"中的一道题。教师巡视,且及时级予个别辅导。全班完成后,指名说出每题计算的全过程,予以共同订正。
3.解决问题验证发现问题后,师生必然要寻找解决问题的方法。从而通过生生交流、师生交流,训练了学生的逻辑思维能力,找到了解决问题的方案,最后较为圆满地解决了“为什么老师赢的次数多”的问题。4.结合实际,应用规律:发现规律后,引导学生去解开生活中的小秘密,通过对摸奖活动发表自己的看法和争当小小设计师,把课堂延伸到了课外。以生活中的实际问题进一步激发学生的思维,渗透思想教育和培养学生应用数学的意识,体会可能性的大小与事件发生的不确定性之间的关系,开放性的习题设计,给学生提供了解决实际问题的机会,增强学生学习数学的信心。5.全课小结,畅谈感受。说说这节课有什么收获?让学生畅谈感受、收获,不仅可以培养他们的概括能力和语言表达能力,更重要的是同学之间可以互相学习,取长补短,互相评价鼓励。
让学生再用计算器计算,然后让学生谈谈遇到的问题(计算器已经不能把这些数显示出来了)。最后让学生根据上面的计算结果,找出规律,再直接写出后四题的得数,并组织学生交流,要求学生说说自己的思考过程及依据,确认发现的规律,让学生进一步体会计算器的作用:计算器还可以帮助我们探索规律。(设计意图:设计不同层次的练习,使学生体验计算器的有用性,提高学生解决问题的能力,培养学生辨证思维能力)四、最后进行全课总结。整个活动,老师创设情境,启发诱导,设疑激趣,学生自主探索,动手操作,积极思考,讨论交流,给学生提供了充分的数学活动机会,充分发挥了学生的主体作用,使学生不仅掌握了知识,发展了能力,同时又体验了数学问题的探索性与创造性,以及成功的喜悦,学生学得轻松,学得主动,学有创造,学有发展
情感态度与价值观:1、能够在自己独立调查、分析、思考的基础上,积极参与小组讨论,敢于发表自己的意见。2、使学生能够综合应用所学的知识解决生活中的合理存款问题,感受数学与现实生活的密切关系。3、使学生认识到数学应用的广泛性并培养学生的投资意识教学重点及难点1、使学生能自主探索合理存款的最大收益问题的方法。2、综合应用所学的知识认真地分析数量关系,正确地解决日常生活中相关的实际问题。二、教学教法分析1.教法设计为了更好的突出重点,突破难点,完成教学目标,我结合学生的心理特点,首先采用“情境法”引出问题,再“学生汇报”调查结果。接着“师生互动探究”收益最大的存款方式,学生在“自主探索讨论”中掌握根据实际情况合理存款。同时利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率。2.学法指导本节课我重点立足于学生的“汇报”和“设计”,并采用学生整理信息口述、小组讨论,同桌讨论,合作计算等多种方法,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
2、课标要求对于本节课内容课标要求:探索并掌握两个三角形全等的条件;注重所学内容与现实生活的联系,注重经历观察、操作、推理、想像等探索过程。初步建立空间观念,发展几何直觉;在探索并掌握两个三角形全等的条件,与他人合作交流的过程中,发展合情推理,进一步学习有条理的思考与表达。二、学生分析 1、七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要不断创造条件和机会,让学生发表见解,充分发挥学生学习的主动性,体现学生的主体地位。
这部分内容教学两位数减两位数的口算,这是学生在学习了两位数减整十数、一位数,以及千以内笔算减法的基础上进行教学的。例题仍以购买玩具火车和玩具汽车为题材,让学生通过求两件玩具的价格差引入新的内容,引导学生探索两位数减两位数的口算方法并比较退位减与不退位减在算法上的异同,正确地理解和掌握算法。教材有意识地让学生经历算法的发现过程,并在合作与交流的活动中,理解和掌握比较合理的口算方法。“想想做做”也是先安排了一些基本练习,帮助学生及时地巩固两位数减两位数的口算方法,然后让学生通过题组比较,进一步完善算法,并重视通过估算促进口算能力的提高。再引导学生综合运用所学知识,解决一些生活中的实际问题。二,说教法1)创设学生熟知的生活情景,把解决实际问题与计算教学结合起来。2)重视让学生在尝试探索的学习过程中,经历算法的发现过程。
二、 说学情:二年级的学生由于他们的年龄特点,具有较高的学习热情,喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的逻辑推理能力。基于以上情况,本节课将以游戏的形式为主,让学生通过生动有趣、形式多样的猜测、推理游戏,使学生在具体的情境中感受简单的推理过程,获得一些简单的推理经验,提高学生的分析能力与合作能力。三、说教学目标:知识与技能目标:通过观察与形式多样的猜测活动,使学生经历简单的推理过程,初步获得一些推理经验。过程与方法目标:通过借助连线、列表等方式整理信息,并按一定的方法进行推理。态度与价值观目标:在简单的推理过程中,使学生感受推理在生后中的广泛应用,初步培养学生有序地、全面地思考问题的意识。培养学生初步的观察、分析、推理能力。四、说教学重点:经历简单的推理过程,初步获得一些简单的推理经验。五、说教学难点:初步培养学生有序地、全面地思考问题的能力。
1、组织理解近似数的含义。出示例8的主题图。聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?组织学生进行讨论、交流。思考:后半句约1500人是什么意思?小组汇报:A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)引导学生明白近似数更容易记,因为它正好是正百数。出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。