2、了解几种剪刀的用途,知道它们是生活中常用的工具。3、发展幼儿手部肌肉的灵活性。 4、牢记用剪常规。【活动准备】 窗花剪纸一张、花枝剪、理发剪、剪指刀、幼儿用剪刀。 【活动过程】一、导入 小朋友们平时都爱玩,都喜欢做游戏,小朋友们,你们玩过这种游戏吗?(师示范)你们知道这个游戏叫什么名字吗?(石头、剪刀、金刚锤,师着重用手示范剪刀)平时你们都见过什么样的剪刀啊?(剪花的、剪指甲的……) 二、认识各种剪刀 今天老师也给小朋友带来了几把剪刀,大家来仔细看一看,摸一摸,说一说:这些剪刀哪些地方一样?哪些地方不一样?(幼儿边看边说)教师小结:(1)相同点:都叫剪刀;都可用来剪东西;都有一个轴;都有刀刃。(2)不同点:外形不同,用途不同。剪刀的外形决定了它的用途,教师手持实物问:既然剪刀的外形决定了它们的用途,那么小朋友根据你观察到的这几种剪刀的外形,猜一猜它们是剪什么的?(幼儿:可能是修剪树枝的、也可能是理发的……),好!让我们通过课件来看一下,它们到底是做什么用的?
2、学习按一定标准分类的方法。(是否能吸铁的标准) 3、激发对磁铁吸铁现象的探索兴趣。【活动准备】 1、每人一盘材料,内有磁铁和铁片、回形针、螺丝帽、钥匙、硬币、纽扣、木块、布条、玻璃球、塑料玩具等。 2、在教室中增加一些铁制用具供幼儿探索。【活动过程】 1、激发幼儿探索的兴趣。 “小朋友,请你看看你面前的盘子里有些什么?”“请你玩玩盘子里的东西,说说你发现了什么?”(有的东西会粘在一个黑块上)
2、创造性地设计花的礼物,使幼儿进一步萌发爱花、护花的意识。 活动准备: 场地布置(花仙子的花园) 金银花露、玫瑰花茶、菊花茶、桂花糕、蜂蜜、花卉精油、熏香用品、干花袋、花朵装饰品、春姑娘图片、花朵头箍、纸、记号笔。 活动流程: 观察环境,引出主题—观察尝试,操作发现—自我创造、描述构思—情感激发 一、观察环境,感知花的美1、带入场地:今天我们去花仙子的花园玩,好吗?2、观察环境:你们觉得花仙子的花园怎么样?为什么漂亮? 看见花你感到怎么样?
2、在玩乐中发现哪些液体可以吹出泡泡,并了解泡泡液体受光的折射可呈现美丽多彩的颜色。 3、初步探索出不同形状的圈吹出的泡泡都是一致的。 4、尝试用简单的符号学做记录。【活动准备】 1、割好的大饮料瓶五个、清水、肥皂液、洗衣粉液、白猫洗涤剂液、泡泡水。 2、每个幼儿一个吸管,不同形状的小铁圈若干(长方形、圆形、三角形)。 3、做好的笑脸图形和不高兴脸型图形若干个、裁割好的吹塑板五张、大夹子五个、推动的黑板一块、彩色打印的五种液体的图案、大数字1、2、3、4、5。小桌子五张、三张画好长方形、正方形、圆形的纸、一支记号笔 4、先把五种液体的图案分别贴在五张吹塑板上,然后再把五个数字分别贴在五个图案的上面,把图案遮挡好后用夹子夹住吹塑板放在五张桌子上。【活动过程】 一、课程导入:教师以游戏<<吹泡泡>>引起幼儿的兴趣,和幼儿谈话。 二、探索活动:哪种液体可以吹出泡泡。 教师介绍:小朋友们,你们吹过泡泡吗?(吹过)我这儿有五种液体,他们分别是清水、肥皂液、洗衣粉水、洗涤剂水和泡泡水,请你们猜一猜哪种液体能吹出泡泡?哪种液体吹出的泡泡最漂亮,哪种液体吹不出泡泡。 1、请幼儿进行大胆尝试,启发幼儿自己学做记录。幼儿自己拿一根吸管挨着吹,觉得不能吹泡泡的拿一个不高兴的脸贴在用大夹子撑起的液体板放上,能吹泡泡的拿一个笑脸也贴在液体板上。 2、鼓励幼儿进行尝试,教师巡回指导。 3、先让幼儿观看幼儿自己做的记录,然后老师依次把数字拿开,露出背后的液体让幼儿初步了解每一组都是什么液体。 4、教师从1号桌依次吹泡泡与幼儿猜想进行对照来验证幼儿自己的试验是否正确。
2、引导幼儿运用多种泥工技能,进行泥工创作,启发幼儿合理利用辅助材料和工具塑造作品,运用分泥、连接、捏边等技能塑造组合物体。3、鼓励幼儿能够按自己的意愿进行创造活动,充分发挥幼儿想象力、创造力。 [活动准备]1、准备大量不同种类的土(红土、黄土、沙土等)、水、玩泥工具、和好的泥(少量)、各种泥玩具。2、准备相关的图片资料,如:水土流失图、填海造田图。3、录音机、《泥娃娃》歌曲磁带。 [活动过程]1、感知观察土。 出示准备好的土,请幼儿仔细观察、感知。“请小朋友用手摸一摸,用小棍翻一翻,看看土是什么样的?闻闻有什么气味?看看土里有什么?各种 土有什么不同?”
[活动准备]1、幼儿从家中带来不同种类的肥皂:香皂、透明皂、药皂、旅游皂、液体皂等;2、新式肥皂的幻灯片;3、肥皂架子;4、幼儿提前了解自带的肥皂 [活动过程] 一、调动幼儿已有生活经验,认识肥皂种类的多样性和肥皂的作用。1、猜一猜,引发幼儿对活动的兴趣。 引导语:有一样东西,只要你和它交上朋友,它就会让你变得讲卫生爱清洁,而且我们天天都用它,这样东西是什么呢?2、幼儿能用有节奏的儿歌说出肥皂的名称和作用。 设计提问:你带的是什么肥皂?它是用来干什么的?3、经验提升:知道肥皂的种类很多,而且每种肥皂都有它的专用性。 二、感知肥皂的形状、颜色、气味、大小等的特点和多样性,增加幼儿对肥皂的喜爱之
2、在游戏中探索影子的方位变化特点。3、愿意参加探索游戏,勇于表达自己的想法和认识。活动准备:选择一个晴朗的天气活动过程:一、猜谜,激发幼儿探索影子的兴趣。1、请幼儿猜谜语:我有个好朋友,我走它也走,我停它也停,我到哪,它到哪,紧紧跟在我身边,这是谁?2、找自己的影子。 3、相互交流。
2、了解雨与人类的关系。3、激发幼儿观察、发现、探索自然的兴趣。 活动准备1、木偶台、木偶小兔、兔妈妈。2、酒精灯、烧杯、玻璃片、玻璃杯、火柴。3、投影机、故事《小水滴旅行记》、有关幻灯片、磁带。 活动过程一、教师木偶表演,提出尝试问题 教师以兔妈妈带小兔出去玩,忽然天下雨了,小兔问妈妈:“天上为什么会下雨?”的故事情景导放课题,提出问题:“小朋友,你知道天上为什么会下雨吗?” 二、小朋友做小实验(幼儿第一次尝试,分组活动)1、幼儿点燃酒精灯,把水加热。2、教师提出尝试问题:仔细观察一下,你发现了什么?3、小结:水热了就会有水蒸气,许多水蒸气向上跑的现象叫做“蒸发”。4、讨论:你平时看到过“蒸发”现象吗? (发散性思维)
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
大家上午好!今天我们在这里举行2023届高三一轮复习动员大会,首先向任劳任怨、扎实工作的老师们表示真诚的感谢,向勤奋学习、努力拼搏的同学们致以亲切的问候!此时此刻我们相聚在这里时,每位同学都又有了一个新的名字:高三的战士。高一是基础,高二是关键,高三是决战。经过了高一的锻造,高二的历练,如今我们终于站在了决战的起点,决战意味着什么?决战意味着炮与火的考验,血与泪的洗礼,进与退的选择,成与败的决断。那么,高三的勇士们,你们准备好了吗?
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
2.三角形的分类。师:你能给三角形按照不同的标准进行分类吗?生用自己喜欢的方式整理分类,然后汇报:生:三角形按角分为锐角三角形、直角三角形、钝角三角形。师:什么是锐角三角形、直角三角形、钝角三角形?生:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。生:三角形按边分为不等边三角形(三条边都不相等)、等腰三角形(等边三角形) 等腰三角形的两条边相等,等边三角形的三条边都相等。3.四边形分类。师:你能给四边形分类吗?生:四边形分为平行四边形和梯形;平行四边形包括长方形和正方形,长方形又包括正方形;梯形包括等腰梯形和直角梯形。4.直线、射线和线段的关系。小组内互相交流,然后汇报:
一、说教材《表里的生物》一文,叙述了作者小时候一段幼稚可笑的经历。他认为“凡能发出声音的,都是活的生物”,听到父亲的怀表发出清脆的声音,就认为里面也是一定有一个小生物。这使他充满了好奇,可是父亲不许他动,这又使他的心很痛苦。一次父亲打开表盖让他看,并说这摆来摆去的小东西是蝎子尾巴,他信以为真,见人就说父亲有一个小蝎子在表里。文章叙述质朴,就像与人倾心交谈自己童年的一件难忘的趣事,所以教师授课时尽量营造这种亲切的氛围,让学生津津有味地学,兴致勃勃地说。二、说教学目标1.读懂课文内容,了解文中的“我”是个怎样的孩子,激发学生从小培养自己善于观察,勤于思考的习惯,和不断探索的精神。2.抓住课文中对人物对话和心理活动的描写,有感情地朗读课文,体会课文表达的意思。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。