2、感知上下、左右、前后等不同方位,以及从不同的方向积极探索周围环境中物体所处的位置。活动(一):感知5以内的序数活动准备:活动过程:1、教师出示火车车厢,引导幼儿观察:(1)火车有几节车厢,邀请小动物坐上火车。(2)从前后不同的方位说一说:小动物坐第几节车厢?2、幼儿操作:按教师指令的要求,邀请小动物坐火车郊游。3、游戏:开火车:听指令,请乘客下车。3、幼儿跑组活动:(1)、小树排队:提供5棵高矮不一的小树排队,并用数字卡片标上序号。(2)、串珠子:提供5粒不同颜色的珠子,幼儿串好珠子后记录珠子的序号。(3)送小动物住新房:根据卡片的要求,把动物送回家。
二、教学目标 ★知识与技能目标: 1、能正确指认绿色开花植物的六大器官; 2、能说出绿色开花植物的相同点和不同点; 3、能用图画或文字描述并记录所观察的植物。 ★过程与方法: 学生在自主探究解决问题的过程中获取认识新知的方法。 ★情感态度与价值观: 在进行探究活动的过程中激发学生研究植物的兴趣,培养学生的合作意识和创新精神。 三、教学重难点 重点:认识绿色开花植物的六大器官。 难点:能用图画或文字描述并记录所观察的植物。
活动一:课本第三页的活动题,把学生分成几组然后让他们读图讨论,思考书上的几个问题,最后派个代表回答问题.最后教师做适当的补充:人口的自然增长不仅与人口自然增长率有关,而且还与人口基数有关.活动二:课本第七页的活动,先让两位学生阅读第六页的案例结合活动题思考问题,让几个组学生讨论所给的几个问题.让学生归纳最后教师做适当的补充.时间安排:由于本节内容不难因此整个教学过程是一节课的时间来完成的因此在教学过程中注意时间的把握,在做活动和讨论时注意把握时间,自己尽量少说废话.课堂小结通过这一节的学习,同学们正确理解和认识人口增长,增长模式和人口增长模式的转变。我们可以利用比较法、分析法来掌握,并联系现实生活,进行分析、判断,化理论知识于实践之中。
活动准备: 1、大棋谱两副,黑白棋子若干。 2、红、黄、绿、紫队标志一份,每队准备一副棋谱,若干黑白子。 3、数字卡片“6”以内加减算式若干。 活动过程: 一、分队推选小队长 “分成四队,每队4个孩子,自己选出小队长” 二、黑白棋对抗赛 1、规则:每队选2名小队员先后参加比赛,第一名队员用黑子,第二名队员用白子,要求黑子和白子合起来我给你的数。 2、幼儿比赛,教师总结比赛情况。
2、发展幼儿思维的准确性、灵活性,激发幼儿参与数学活动的兴趣。 活动准备 1、连线纸、水彩笔人手一份 2、鸡蛋、鸭蛋、鹅蛋、鸟蛋图片若干 3、摆放成封闭式的平面鸡蛋、鸭蛋、鹅蛋、鸟蛋若干张 4、数字卡片 活动过程 一、引起幼儿兴趣、交代主题,活动导入。 1、游戏《连线找客人》 “今天我们这里来了四位神秘的客人,把卡片上的点子按数字从小到大的连起来,你就可以知道了。” 2、幼儿连线,教师将幼儿作品贴在黑板上。 今天来的客人是谁?(一起说一说) 小动物们说:小朋友,你们知道谁是我的妈妈吗?请你们帮帮忙,把我们的妈妈找出来吧! 出示相应的动物妈妈图片。
3、想象歌词意境,自配动作,有表情地学唱歌曲。(1)引导学生为第一段每一句歌词配上动作,老师做适当提示(可为第一句歌词做示范)。(学生想象思考,并请个别学生作示范引导大家一起做),将第一段歌词连起来唱一遍,用动作加强音乐记忆和情感体验。(2)第二段歌词的学唱采用师生“接唱”,可老师唱前一句,学生后后一句,唱一遍,然后再交换。结尾句大家一起唱。(提示放慢速度,轻轻试唱。交换唱一遍)(3)第三段歌词学生自主学习。采用“接唱”的形式,男女生分组,或将学生分成两组,进行接唱,情绪豪迈的部分可引导男生唱,柔和抒情的部分女生唱,结尾句大家一起唱。(教师引导学生自己思考,自己处理)4、学生小结学习经验,提出演唱方案,并引导学生找出歌曲中的音乐符号f、mp、>、渐弱,在演唱时加以运用和注意表现。)最好将这些符号做成卡片!用力度变化的方法,演唱整首歌一遍,(可加动作、接唱等)
教学目标:(1)知识目标:1.能够听、说、认读句子:Let's read, Let's make ,listen,write,match and say 中的句子。2.能够听懂 Listen and write 部分的录音并正确填写句子。(2)能力目标:通过教学,使学生能够了解英语请柬的内容并会模仿书写英语请柬。(3)情感目标:培养师生之间和同学之间的友谊与情感,积极鼓励学生展现才能。三、说教学重点:1.能够听、说、认读句子:"We're going to have a farewell party . How do you feel? I feel …."四、说教学难点:Is every having a good time?五、说教法:1. 教法设计本节课中,在教学过程中注意发挥学生的主动积极性,给学生一个轻松愉快的语言学习氛围,让学习过程充满乐趣,同时使他们感受到一定的挑战,满足他们的成就感,使思维始终处于积极状态。2. 学法指导重视多元智能教学原理、合作学习法和任务型语言学习法等应用,充分调动学生的感觉器官,想象能力,激发学生积极参与课堂教学活动。
你是怎样来分的,这一环节速度怎样?通过与第一部分的比较,感受到歌词的再现,节奏的扩展,使对北京故乡的热爱之情更加的情真意切。(设计目的:通过以上的这些问题,让学生真正成为学习的主人,不仅学会,而且会学,来思考歌曲所表达的情感所在)(2介绍歌曲曲式结构 A B A’(3歌曲的演唱形式是什么?--------女声独唱,‘曲作家为什么选择女高音独唱?(设计目的:学生三、拓展师:我们的词曲作者用歌曲的形式来表达内心对故乡的热爱之情,这也正是生长于北京的人们对乡土的怀恋之情。那你们爱自己的家乡吗?喜欢家乡的什么?生:师:让我们一起走进美丽的滨海城市---慈溪,来感受慈溪的繁荣、魅力景象吧生观赏设计目的:我衷心的希望,通过这样的设计,能让“音乐”这魅力无穷而令人神往的艺术,成为孩子们心中的花朵,让他铺满孩子们的人生道路,散发出不绝的芬芳!我的说课到此结束,敬请各位评委老师多多给予指导。谢谢大家!
准备:1.有秒针的大钟。 2.有爷爷的图片,开心与不开心的图片各一幅。 3.《幸福拍手歌》一盘。 4.各种不快乐的小动物的图片人手一张。 过程:一.爷爷不开心,出示第一张图片。 1.“请小朋友看看,这张图片上有谁?他怎么了?” 幼:爷爷很不开心很难过 2.“你是从哪里看出来的?” 幼:爷爷的眉头皱在一起,爷爷的嘴巴不笑!
【活动目标】1、激发幼儿热爱大自然的情感。2、培养幼儿尊重事实的科学态度,提高自主学习的能力。3、通过观察和实验,了解石头的多样性(出处、特性),丰富地理知识。【活动准备】1、教学课件2、实验材料、用书同幼儿人数。【活动重难点】1、幼儿能说出三种石头不一样的现象。2、教师对三种石头产生不同现象后的反复引导。【活动过程】(一)开始部分 幼儿介绍自己带来的石头。(幼儿互相介绍手中的石头,鼓励幼儿自由与同伴交流,说出自己的发现)(二)基本部分1、欣赏石头风景图 大千世界,有各种各样的石头,下面就让我们一起走进美丽的石头风景中吧!2、提问、猜想、记录 (1)提问:在大自然中,石头成为美丽的风景,石头又分为哪几种,每种石头又叫什么? (幼儿讨论)并且介绍石头的正确名称观看课件,了解石头名称。 (2)猜想:①你觉得三种石头能够漂浮在水面的是哪一种?②你觉得三种石头能写字的是哪一种?③你觉得三种石头摸上去最光华的哪一种? (3)纪录: 幼儿把猜想记录在《幼儿用书》的猜想表格中。3、幼儿动手实验,感知石头的特性, (1)把石灰石、鹅卵石和火山石放在手中,感受那个摸起来最光滑。 (2)用石灰石、鹅卵石和火山石在黑卡纸画画,哪个可以画出来。 (3)把石灰石、鹅卵石和火山石放进水中,会发现哪个能浮起来。 (4)把自己发现记录在《幼儿用书》的发现表格中(教师帮助幼儿认读书中相应的正确答案)。
(3)一切从实际出发、实事求是在讲授这部分内容时,同样继续利用长城的例子来说明,古人正是经过实地的考察得出最佳的建造地点等,结合了当地当时的实际来建造长城,引导学生得出从实际出发,实事求是的结论。3、课程小结:本节的所有内容已经讲授完毕了,为了让学生更好地巩固本节课所学的知识,我会利用板书为学生梳理本节的重点条框内容。这样能够帮助学生理清思路明确各知识点的关系。4、作业:我会要求同学在课后以某一个事例(如:一件事情、一栋建筑、一辆汽车等)为例,来写出着个事例中体现我们今天所讲课的内容的知识点。七、说教学理念我的教学理念是以传统的教授法与范例教学法就相结合的教学方法为主,充分利用多媒体的教学手段,结合事例来讲解知识,在上课过程中充分调动同学的积极性来讲解知识。我的说课完毕,不足之处望各位老师给予指正!
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
情景导学古语云:“勤学如春起之苗,不见其增,日有所长”如果对“春起之苗”每日用精密仪器度量,则每日的高度值按日期排在一起,可组成一个数列. 那么什么叫数列呢?二、问题探究1. 王芳从一岁到17岁,每年生日那天测量身高,将这些身高数据(单位:厘米)依次排成一列数:75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①记王芳第i岁的身高为 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我们发现h_i中的i反映了身高按岁数从1到17的顺序排列时的确定位置,即h_1=75 是排在第1位的数,h_2=87是排在第2位的数〖"…" ,h〗_17 =168是排在第17位的数,它们之间不能交换位置,所以①具有确定顺序的一列数。2. 在两河流域发掘的一块泥板(编号K90,约生产于公元前7世纪)上,有一列依次表示一个月中从第1天到第15天,每天月亮可见部分的数:5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。