①演示动画,理解大爆炸宇宙论②主要观点:? 大约150亿年前,我们所处的宇宙全部以粒子的形式、极高的温度、极大的密度,被挤压在一个“原始火球”中。? 大爆炸使物质四散出击,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命。2、其它宇宙形成理¬——稳定理论3、大胆猜测:宇宙的将来史蒂芬·霍金是英国物理学家,他提出的黑洞理论和宇宙无边界的设想成了现代宇宙学的重要基石。霍金的宇宙无边界的设想是这样的:第一,宇宙是无边的。第二,宇宙不是一个可以任意赋予初始条件或边界的一般系统。霍金预言宇宙有两种结局:永远膨胀下去,不断地扩大,我们将看到所有星系的星球老化、死亡,剩下我们孤零零的,在一片黑暗当中。或者会塌缩而在大挤压处终结科学巨人霍金:探索的精神)
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
(一)实施分类考核,细化考核指标。针对不同职务层次人员合理确定不同考核项目,避免考核标准过于笼统、抽象,力求减少考核误差。对处室主要领导明确了“思想品德、工作实绩、组织领导、沟通协调、遵守纪律、工作作风、群众基础”等7项考核指标,对其他公务员明确了“思想品德、出勤情况、工作实绩、工作方法、沟通协调、遵守纪律、工作作风、群众基础”等8 项考核指标。在此基础上,细化各项考核指标,按百分制确定分值,每一项考核指标均有“优、良、一般、较差”4个等级的参考要素,并对每个要素设立若干具体要求。
(一)接受客观现实,调整就业期望值 从文章的第一部分我们可以看到,其实中高等级的职位需求是较少的,而较低等级的职位需求是巨大的,但是,许多大学生对“市场”残酷的一面认识不足,对就业市场的客观实际了解不够,只是停留在自己对“美好前途的幻想”之中,这就导致了就业市场上许多大学生找不到工作的同时,仍然有大量的职位空缺的现状。我们说,与其不停地成天怨天尤人,浪费了时间、影响了自己心情,还不如勇敢地承认和接受当前所面临的现实,彻底打破以往的美好想象,脚踏实地地寻求解决问题的好办法。这就要求我们调整就业的期望值。
一、教师对教育科研的认识大部分教师认为参与教育科研的目的是为了解决教学中的实际问题,教育科研对教学有促进作用。事实说明大部分教师想的更多的是如何更有效地将教育科研的成果运用并物化为教育质量的提高,同时也希望通过教育科学研究的实践发展与完善自我。反思我们师训工作,虽然初衷与教师们这种想法一致,即提高教师的科研能力与水平。但在实际操作中时常会有不和谐的声音,如片面追求发表文章的数量,过于注重文章内容的所谓“新潮”,热衷于设置各种奖项,奖状越做越精美,奖面也越来越宽。
(一)接受客观现实,调整就业期望值 从文章的第一部分我们可以看到,其实中高等级的职位需求是较少的,而较低等级的职位需求是巨大的,但是,许多大学生对“市场”残酷的一面认识不足,对就业市场的客观实际了解不够,只是停留在自己对“美好前途的幻想”之中,这就导致了就业市场上许多大学生找不到工作的同时,仍然有大量的职位空缺的现状。我们说,与其不停地成天怨天尤人,浪费了时间、影响了自己心情,还不如勇敢地承认和接受当前所面临的现实,彻底打破以往的美好想象,脚踏实地地寻求解决问题的好办法。这就要求我们调整就业的期望值。
一、主要做法如何调动机关公务员积极性,将繁琐、重复的机关事务如实记录;如何提高平时记录的主动性和真实性,解决好这两个问题,是开展平时考核的基础。按照客观公正、注重实绩、简便易行的原则,省外办采取自我考核与领导评价相结合、定性与定量相结合等方法,细化考核内容、规范考核方法、强化结果运用,逐渐摸索出一套符合外事工作实际的平时考核办法。
(一)加强组织协调,推行信用监管机制在县政府的统一领导下,努力建立消费环境建设组织协调机制,稳步推进放心消费环境创建活动的开展,积极完善投诉举报处理机制,实现原工商12315、质检12365、食药12331、价监12358、知识产权12330五线合一,消费者投诉举报统一使用12315投诉平台和热线号码。五线合一后,消费者不仅可以通过网上、线下、电话、网站、微信等多渠道进行投诉举报,而且所有投诉举报信息均实行大数据监控和动态适时监管。统一高效的12315消费投诉举报渠道的开通,形成了科学有效的消保维权和行政执法体系,为推进12315五进工作,为更好的维护消费者权益、营造良好消费环境奠定了坚实的基础,发挥了积极的作用,提供有力的保障。在此基础上,我们探索消费投诉与企业信用信息挂钩,建立信用约束和失信惩戒机制,对企业的经营信息进行归集整理,并通过国家企业信用信息公示系统进行公开披露,将侵害消费者合法权益的经营主体列入经营异常名录或严重违法失信企业名单,形成“一处失信、处处受限”的监督机制。
一、教师对教育科研的认识大部分教师认为参与教育科研的目的是为了解决教学中的实际问题,教育科研对教学有促进作用。事实说明大部分教师想的更多的是如何更有效地将教育科研的成果运用并物化为教育质量的提高,同时也希望通过教育科学研究的实践发展与完善自我。反思我们师训工作,虽然初衷与教师们这种想法一致,即提高教师的科研能力与水平。但在实际操作中时常会有不和谐的声音,如片面追求发表文章的数量,过于注重文章内容的所谓“新潮”,热衷于设置各种奖项,奖状越做越精美,奖面也越来越宽。
语文学习教无定法,重在得法,贵在用法,施教之功,贵在导学,因此,语文学习不仅要帮助学生学习和掌握知识,更重要的是让学生学会求知,让学生学会学习方法,变“我学会”为“我会学”。结合本课语言优美,情境奇特的特点,我引导学生用“自读自悟、美读交流、入境体验,升华情感”等学习方法来理解课文内容,感悟文章意境之美,体验探究自然之乐。
在全县几千名考生中,他名列第三被录取了。他的学生生涯随着这张录取通知书的到来,也就完全终结了!”为了那个家牺牲的太多,他没日没夜的忙碌着,但是所有的努力都是为了那个家,似乎从来都没有为自己“自私”一下。这就是孙少安,孙家的长子。这个耿直,质朴的农村男子,他善良,能吃苦,有责任心,同时血气方刚,真心地爱着润叶。但是,却因为他身为农家,面对受过高等教育的润叶,爱,却没有勇气,爱,却自卑。他,最终错过了润叶。同样,因为局限的小农意识,他娶了x姑娘,生活便代替了爱情,与一个自己不曾爱过的人过起了柴米油盐的日子,他们相互扶持,紧紧依靠直到老去,一切平淡,生活便是真实的生活了。
我走在院墙外的水泥道上。水泥道像铺上了一块彩色的地毯。这是一块印着落叶图案的、闪闪发光的地毯,从脚下一直铺到很远很远的地方,一直到路的尽头……每一片法国梧桐树的落叶,都像一个金色的小巴掌,熨帖地、平展地粘在水泥道上。它们排列得并不规则,甚至有些凌乱,然而,这更增添了水泥道的美。(1)指名读这两段话,组内交流自己的感受。(2)班级交流感受,教师适时总结。(作者把这条铺满金黄色梧桐叶的水泥道想象成一块彩色的地毯,把这一片片梧桐叶想象成一个个金色的小巴掌,这是比喻的修辞手法,把水泥道和梧桐叶写得十分生动形象。)
这是本节课的重点。让同学们将∠aob对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,请同学们观察并思考:后折叠的二条折痕的交点在什么地方?这两条折痕与角的两边有什么位置关系?这两条折痕在数量上有什么关系?这时有的同学会说:“角的平分线上的点到角的两边的距离相等”.即得到了角平分线的性质定理的猜想。接着我会让同学们理论证明,并转化为符号语言,注意分清题设和结论。有的同学会用全等三角形的判定定理aas证明,从而证明了猜想得到了角平分线的性质定理。
问题1:你能证明“两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2.求证:a∥b. 问题2:你能证明“两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行”这个命题的正确性吗?已知:如图,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补.求证:a∥b
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。