1、项目执行居民建档:三水乡辖区常住人口41365人,截止6月份全乡共建立居民健康档案38877份,建档率95%。老年人健康管理:辖区65岁及以上常住居民数6804人,健康管理4976人,健康管理率73.13%。慢性病患者健康管理:管理高血压3648人,管理率43.25%;管理糖尿病1344人,管理率41.52%。严重精神障碍患者健康管理:登记在册患者212人,管理212人,管理率100%。健康扶贫 辖区内1120户1900人,已查体1233人、死亡40人。签约1900人。建立各类健康扶贫工作台账,并制定外出人员查体销号工作台账随时来院健康查体后逐一销号。
一、认识说课的实质说课是指教师以现代教育理念为指导,在精心备课的基础上,面对同行或教学研究人员,采用口头语言或相关辅助手段,阐述某学科课程或某具体课程的教学设计及其依据的教学研究过程(李崇爱,孟应周,2011)。简单而言,说课就是教师对“教什么”、“怎么教”、“为什么这么教”等问题进行阐述。这样做的目的,一方面可以展现一个教师的教育理论修养、教学组织能力和口头表达能力,另一方面可以帮助教师优化教学设计,反思教学行为,分享教学经验。
刚才,我们一起收听收看了全省疫情防控调度会议,各位省领导对全省疫情防控工作进行了再安排、再部署、再强调。各县市区各部门一定要认真抓好贯彻落实。下面,我就近期疫情防控工作,强调五点意见。 第一,要强化防控意识。当前,奥密克戎毒株的传染性、隐匿性对疫情防控工作提出了更高标准、更严要求、更多挑战。近日,各县市区接到的协查函数量明显增多,密切接触者活动范围点多面广,给我们的防控工作带来巨大压力。各县市区、各部门一定要树牢风险就在身边的意识,在状态、强部署、抓落实,决不能松懈、麻痹、侥幸,坚决守住疫情防控承德阵地。 第二,要强化关口前移。一是坚持宣传引导在前。突出目前严峻复杂的防控形势,重点宣传风险地区人员非必要不返承,告知广大市民群众非必要不聚餐、不聚会,警示风险人员必须主动报备。二是坚持防控措施在前。要严格“减聚集、控流动、严验码”要求,重点是健康码和行程码要逐一查验,口罩要戴规范。全国“两会”和冬残奥会期间,领导干部要带好头、守规矩,非必要不外出,各级各类机关企事业单位、人群团体非必要不邀请市外人员来承参加会议、培训、督导等各类活动。三是坚持主动对接在前。对境外和目前在中高风险地区人员,要主动逐一对接,讲清利弊,稳在外地。 第三,要强化防线作用。一要把牢第一道防线。所有入承大小路口都要有人在岗、有人核查,尤其是夜间值守要到位,不能松懈,逐一严查健康码和行程码。二要守好监测预警防线。所有农村(小区)、机关企事业单位、公共场所、重点场所、特殊场所要强化健康码和行程码查验,异常情况及时报告,基层医疗机构和药店发现发热病人,要第一时间留观、报告,确保闭环转运,及时检测甄别,“35+6”类重点人员核酸检测一人不漏,确保“四早”落实到位。三要筑牢三道防线。要严守三道防线,加大检查力度,落实“六必”要求,全面查控进京车辆人员,坚决防止风险人员由我市进京入张。
同志们:今天我们召开全县资金争取暨招商引资项目调度会议,主要任务是认真贯彻落实中央和省、市委关于经济工作的部署要求,对全县资金争取和招商引资工作再安排、再部署,动员全县各级各部门进一步认清形势,坚定信心、铆足干劲,咬定目标、奋勇争先,以奋发有为的精神状态和务实担当的工作作风,全力抓好资金争取和招商引资任务落实,为县域经济高质量发展奠定坚实基础。会前,已经印发了*年资金争取和招商引资任务分解文件,县上对招商引资考核办法进行了修订,待相关会议审定后下发,希望大家按照文件要求,主动担当,抓好落实。下面,请*同志讲话。………………刚才,*同志对全县资金争取和招商引资工作作了安排部署,讲得很全面、很具体、很到位,我完全同意,请大家结合各自实际,认真抓好落实。下面,我再讲三个方面意见:
一、XX区电子商基本现状XX省电子商统计监测平台反馈今年上半年XX区电子商零售额达到13.17亿元同比增长9.75%;全年预计达到28亿元。餐饮、粮油食品和化妆品几大品类占比靠前。二、今年电商工开展情况(一)线下沟通了解需求我区电商企业主要集中在软件园表性业态有农副产品、化妆品、乐器、生活用品、还有跨境贸易产品。今年通过多次走访调研区内电商企业了解企业实际需求我区大部分企业今年电商行业的发展充希望并如何推动我区电商出相关见。(二)比学赶超争先发展在省市两级商主管部门的组织领导下我区积极宣传并组织企业参各类活动组织XXX市XXX商贸有限公司申请电子商示范企业;指导企业申请市级现业政策支持并拨付2021年电商企业现业政策资金XXXXXX元;摸排电商企业人才组织人才职称申报。
2.比较物体的高度和影长时,要在同一( )、同一( )进行。3.在同一时间、同一地点,物体的高度和影长成( )比例。4.同样高度的物体在不同时间、不同地点测出的影长是会( )的。 5、李明在操场上插上几根长短不同的的竹竿,在同一时间里测量这几根竹竿的长和相应的影长情况如下表: 竹竿长/米11.21.8245影长/米0.50.60.9122.5比值 (1)算出竹竿和影长的比值,并填在表格中。 (2)通过测量和计算,你发现了什么? (3)这时李明测出旗杆的影长是5米,你能求出旗杆的实际高度是多少米? (4)这时王刚测出一棵松树的影长是2.4米,你能算出这棵松树的实际高度吗? 6、为了测量出学校旗杆的高度,同学们找来了一根长8分米的木棍立在旗杆旁,发现木棍的影长是6分米,同时又发现旗杆的影长是7.5米,你能求出旗杆的高度吗? 7.在同一时刻,小璐测得她的影长为1米,距她不远处的一棵槐树的影长为5米。已知小璐的身高为1.3米,这棵槐树的有多高。
提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。
(一)观图激趣、设疑导入 出示课件的第二张幻灯片。师:请说出与老师相反的词语或句子。向上看。向东走50米。小维在知识竞赛中赢了20分。小明在银行存入300元钱。零上10℃。生:……。师:这就是我们今天要学习的负数。板书:负数(二)探究新知1、出示课件的第三张幻灯片。师:请大家仔细观察上图,你发现什么问题?学生以小组为单位交流。学生以小组为单位汇报交流结果。生:0℃表示什么意思呢?生:3℃和-3℃表示的意思一样吗?师:小组内交流解决上述问题。学生以小组为单位探究交流。学生以小组为单位汇报探究交流结果。老师对学生汇报给予适当的评价。老师课件出示答案。师:0℃表示淡水结冰的温度,比0℃低的温度叫零下温度,通常在数字前加“-”(负号),如-3 ℃表示零下3摄氏度,读作负三摄氏度;比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上三摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
一 说教材运算定律和简便计算的单元复习是人教版第八册第三单元内容,属于“数与代数”领域。本节内容是在学生学习了运算定律(加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律)以及基本的简便计算方法(连减、连除)基础上进行的整理复习课。二、说教学目标及重难点1、通过复习、梳理,学生能熟练掌握加法、乘法等运算定律,能运用运算定律进行简便计算。2、培养学生根据实际情况,选择算法的能力,能灵活地解决现实生活中的简单实际问题。教学重点:理解并熟练掌握运算定律,正确进行简便计算。教学难点:根据实际,灵活计算。三、说教法学法根据教学目标及重难点,采用小组合作、自主探究、动手操作的学习方式。四、说教学过程
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
(一)机构编制人员方面 区退役军人服务中心及各街道(镇)、社区(村)退役军人服务站挂牌成立,在全区形成了覆盖区、街道(镇)、社区(村)三级退役军人服务体系。目前,区委编委已批复区退役军人服务中心事业编制编制xx名;街道(镇)、社会人员编制尚未明确。 (二)工作经费方面 区财政现已向区退役军人事务局及服务中心拨付各项工作经费xxx万元。其中,先期拨付开办经费xx万元用于购置办公设备,后追加工作经费xxx万元,信息采集工作经费x万元,光荣牌制作经费x万元。
过程与方法:通过阅读保护听力的资料,了解我们的听力经常受到哪些伤害,知道保护听力的做法。情感、态度、价值观:认识到保护听力的重要性,养成良好的用耳习惯和在公共场所保持肃静的习惯。教学重点认识到保护听力的重要性教学难点知道各种控制噪音的方法教学准备发音罐、报纸、毛巾、棉花等
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。