从幼儿的感受和认知上制定:1.欣赏中国结的多样性,感受中国结的美。这是活动的重点,在活动中,运用欣赏、交流、情感的激发等形式突破重点。从幼儿的能力和情感上制定2.学习编简单图案,萌发幼儿对中国劳动人们的热爱之情。通过引导孩子们动手制作简单的中国结,取名等实现情感的升华。活动准备:幼儿知识能力的准备:对中国结意义的简单了解环境布置的准备:收集各种中国结悬挂起,布置成一个展览厅
二、 活动目标1、 让幼儿知道长大了应该自己的事情自己做。2、 培养幼儿的自我服务意识。3、 锻炼幼儿的语言表达能力。三、 活动重难点1、 培养幼儿的自我服务意识。2、 教育幼儿自己的事情自己做。四、 活动准备:故事、衣服、音乐
活动准备 拉线木偶玩具一个(或用纸板制成的活动拉线木偶人)。(准备的材料是用来创设游戏情境的。若没有活动木偶,也可以采用手偶教具代替。)活动过程1.示木偶人创设游戏情境,引起幼儿的兴趣。 教师以小木偶的El吻向大家自我介绍:“我是木头人。今天我想和小朋友一起玩一个游戏,名字叫‘山上有个木头人。”接着,教师边操作木偶拉线,边念儿歌,帮助幼儿了解游戏的基本内容。 表演结束后,教师继续以木偶的口吻与幼儿交谈。教师可以这样说:“谁想和我玩游戏呢?那你必须先告诉我,刚才我说了些什么?”引导幼儿回忆儿歌内容,学会念游戏儿歌,正确发出每个字音,特别是“山”“上”“三”。(活动开始,采用木偶表演的形式创设游戏情境,更符合小班幼儿的认知特点,更能吸引小班幼儿的注意力,激发幼儿对游戏的兴趣。 在此活动中,教师通过语言激发幼儿学念儿歌,在幼儿学习过程中,要及时纠正幼儿的不正确发音,教幼儿正确地念儿歌·这样可以为以后顺利开展游戏奠定基础。)2.向幼儿介绍游戏的规则及玩法。(1)游戏时须念儿歌,并可自由做动作。儿歌做完后就不能动,也不能发出声音。(2)如果谁动了或发出了声响,就必须将手伸给同伴,而同伴则拉住他的手说:“本来要打千千万万下,因为时间来不及马马虎虎打三下。”然后边拍同伴的手心边说:“一、二、三。游戏结束。(听说游戏规则中一定要包含语言练习的要求,否则就不能达成语言学习的目标。此游戏规则中要求幼儿边念儿歌边进行游戏,这就充分体现了语言练习的要求。 对于小班幼儿来说,教师制定的规则一定要简单,语言也一定要简洁明了,以便于幼儿理解游戏的规则,基本了解游戏的玩法。)
活动目标:1、通过操作,引导幼儿感知丝绸和玻璃摩擦之后,能产生静电的现象。2、引导幼儿迁移运用所获得的感性经验,自制小玩具,激发幼儿探索周围事物的兴趣。活动准备:1、玻璃板、薄纸、大头针、丝绸布料2、在干燥的天气进行活动,因为干燥的天气容易产生静电活动过程:一、组织幼儿认识“小指人”,激发探索的兴趣。1、师:“小朋友,这是什么?”(一张薄纸)师:“现在老师用剪刀剪一下,变成了什么?”(老师剪成几个1.5——2厘米高的小纸人,要使小纸人站立不倒,可以在小纸人中间插上一根大头针)2、师:“可爱的小纸人,请你们给小朋友跳个舞吧!”幼儿发现“小纸人”没有跳舞。师问:“你们能不能想办法让它跳起舞呢?”3、请幼儿用各种办法让“小纸人”跳动,谁想出来的办法好。
2.培养幼儿大胆想象和添画的能力。3.体验运用新的绘画方式进行美工活动的乐趣。准备:1.小人国联欢会场景图一张。2.印有指纹娃娃的画纸,黑色沟线笔人手一份。过程:1.引发兴趣。(1)你们还记得《小人国》的故事吗?今天小人国的小人来我们幼儿园做客了!(请看大屏幕)这是国王,这是王后、公主和其他的臣民。噢,还有乐队呢,看他们跳的多开心啊!这么多有趣的小人是怎么画出了的呢?(2)引出上节课画的指纹娃娃。今天指纹娃娃也想和我们一块来参加晚会。
⒉教育幼儿珍惜生命,努力实现自己的理想。 活动重点:感知人生是一个美丽的过程,帮助幼儿树立自己美好的理想。 活动准备:制作课件、画纸、油画棒 活动过程: 一、观看短片 播放短片,教师讲解: ⒈教师:动画片讲述的是谁的故事呢?(小种子)教师:它又学小鸭子又学小猴子是为了干什么呢?(寻找自己的理想) ⒉小种子通过不懈的努力,最后找到了吗?还长成了花,给人们带来美的感受,它很开心的笑了。在它寻找的过程中,我们应该学习它的什么精神呢?请小朋友们带着这个问题再欣赏一遍:应该勇于去寻找自己的理想,做一个堆社会有用的人。 二、播放幻灯片:出示一系列“美丽人生”的图片,幼儿边听音乐边欣赏,如:生日照,结婚照等。 引导幼儿感受人生的美好,要珍惜生命才能享受这个美丽的过程。
2、能用双色刷色,并会用辅助材料添加背景。 3、培养幼儿良好的卫生习惯。活动准备: 1、各种汽车玩具,如卡车、轿车、公共汽车等。 2、颜料、有孩子事先剪好的图形等。活动过程: 1、通过玩具汽车,引起幼儿兴趣。 (1)笛笛笛,谁来了?(出示公共汽车)公共汽车是什么样的呀?(请孩子仔细观察,能用完整的语言来表述。如公共汽车有长长的身子,有圆圆的轮子等。) (2)这又是什么车呀?(小轿车)小轿车有时什么样的呀?(请孩子通过与公共汽车比较来说说。)
2、尝试用半圆形和长方形表现蘑菇房子的主要特征。 3、体验版画独特的作画方法,享受创造的快乐。 活动准备: 吹塑版画纸、笔头坚硬的笔人手一份。 颜料和毛笔若干。 范画一张。 幼儿用书人手一册。 活动过程: 一、教师和幼儿一起打开幼儿用书,共同阅读故事《蘑菇房子》,引出主题。
活动目标:1、了解制作版画的步骤,学习用版画的方法表现房子。 2、尝试用各种几何图形表现房子的主要外形特征。 3、体验制作版画的独特手法,享受创造的快乐。 活动准备:1、宣纸、剪刀、笔头坚硬的笔、白纸人手一份。 2、水粉颜料、吹塑纸、底纹笔、浆糊、彩色纸、稍后一些的纸板若干。 3、范画一张,幼儿用书人手一册。 活动过程: 1、教师和幼儿一起打开幼儿用书,共同阅读故事《蘑菇房子》,引出主题。 2、认识蘑菇房子的特征,了解作画方法。 3、引导幼儿阅读纸版画《房子》,感知各种造型的房子。 引导幼儿看图,猜一猜,这些画是用什么方法制作的? 教师示范制作纸版画:用剪刀将纸板剪成各种形状,并在纸上拼贴出各种房子,接着用黑色、或彩色的颜料涂满白纸,然后,将宣纸覆盖在涂满颜料的画上,并用手压印后,轻轻揭起,放在一旁晾干。
设问2:第3段和第4段都写繁华,两段的区别是什么?预设 第3段是概括总写繁华景象,第4段则是具体描绘繁华景象。两段之间是从概括到具体的逻辑关系。【设计意图】通过细读课文,让学生在把握生字词的基础上对课文有初步的感知,可以用简单的词语概括作者所感知画面的整体特点,而且能够用文中具体的语句加以印证。以此训练学生自主把握文章重要信息的能力。三、自主探究寻繁华1.浏览课文,理清全文的说明顺序设问1:作者介绍了这幅画哪些方面的信息?在文中进行勾画批注,并说说文章可分为哪几个部分,概括主要意思。(生浏览勾画,批注交流)预设 文章分为三个部分:第1段:介绍这幅画作的创作背景,引出本文的说明对象——《清明上河图》。第2段:介绍了这幅画作的作者张择端及其创作动机。
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
2、通过活动,知道关节被牵动时,人能做出许多动作。3、提高幼儿的观察能力及大胆表达的能力。二、活动准备: 1、活动纸偶公仔4个。2、节奏感强的音乐带、录音机。3、水彩笔、八开画纸。4、即时贴标记。
活动准备: 提供三种颜色不同的瓶盖个三个,每人一套1—4的数字卡片。活动过程:1、 分别取三种颜色不同的瓶盖个三个,一一对应排成三横排,中间一排的瓶盖不动,让三排瓶盖变得一排比一排多一个,讨论如何才能做到。2、 找出相应的数字卡片摆在瓶盖的左边,讨论:比3少1的数是几,应排在哪里;比3多1的数是几,应该排在哪里。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。