提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

xx县人力资源和社会保障局2023年上半年工作总结及2023年下半年工作计划

  • 中班健康教案:保护我们的指挥中心—大脑

    中班健康教案:保护我们的指挥中心—大脑

    2、通过师生共同讨论,掌握科学用脑,保护大脑的基本方法。 3、丰富人体形态结构的认知,提高保护意识。活动准备: 关于大脑的图片。活动过程: 一、出示关于大脑的图片,帮助幼儿形成对大脑的初步认识。 1、你知道身体里的总师令在哪里? 2、为什么说大脑是我们的总司令呢? 3、小结:我们写字、画画、作游戏等,都是由大脑来指挥的,所以大脑是我们的总司令。 4、引导幼儿看图,教师向 幼儿介绍简单的知识。 大脑有左右脑,有脑神经,有脑干。大脑负责智力活动,小脑负责运动。大脑中不同的神经负责不同的活动,有的负责吃饭,有的负责睡觉,有的负责唱歌等等。

  • 幼儿园中班健康教案:懂得保护好牙齿

    幼儿园中班健康教案:懂得保护好牙齿

    2、懂得牙齿的用处很大,要注意保护好牙齿。  活动准备:  1、每四个人一个苹果,虾条每人1~2根。  2、牙齿的模型一副。操作卡片《白白的牙齿》六张。  活动过程: 1、让幼儿吃苹果,初步认识牙齿的用处。  今天请小朋友吃点苹果,请你们慢慢地吃,边吃边动脑筋想想看,你是怎么把苹果吃下去的?  引导幼儿大胆说出自己的体验,知道是用牙齿帮助咬断嚼碎苹果,吃下去的。  2、让幼儿认识牙齿的构造。  (1)、你们都有牙齿吗?张开嘴巴让我们们看一看牙齿是什么颜色的?  让幼儿相互看一看,知道每人都有牙齿,牙齿是白白的。

  • 幼儿园中班健康教案:保护我们的皮肤

    幼儿园中班健康教案:保护我们的皮肤

    2、通过观察,了解皮肤,注意保护皮肤的清洁并使皮肤尽量不受到损伤。   3、能大胆地在集体面前表述自己的想法。  活动准备   1、教学挂图一张。   2、放大镜人手一个。  活动过程   1.通过提问,引导幼儿观察认识皮肤。   (1)教师:你们知道我们身体最外面一层表皮是什么吗?请你找一找,我们身体的哪些地方有皮肤?   (2)观察认识皮肤。   提问:皮肤摸上去有什么感觉?皮肤看上去是什么样子的?皮肤上有什么?(汗毛)用放大镜看一看,皮肤又是什么样子的?你的皮肤是什么颜色的,你见过什么颜色的皮肤?   出示挂图,观察皮肤的剖面图以及不同肤色的儿童,直观感受皮肤组织的构成和不同人种的肤色。

  • 小班环保主题活动 我们的朋友课件教案

    小班环保主题活动 我们的朋友课件教案

    活动目的:1,初步了解水的基本特征,知道人们的生活离不开水,地球上的所有生物都离不开水。 2,激发幼儿乐于亲近水,接触水,热爱干净水环境的美好愿望。并能关注周围的水环境。 3,鼓励幼儿发动身边的人一起积极参加各项水的游戏和试验。家长参与:1,在生活中寻找节约用水的方法,养成节约用水的习惯。 2,和孩子一起做有关水的小试验和小游戏,发展孩子动手动脑的能力。挤。

  • 刮画——大班环保美术活动课件教案

    刮画——大班环保美术活动课件教案

    教学准备: 1、图片一张、(愁眉苦脸的垃圾房)磁带、录音机。2、每人一张涂好色的底板纸一张。3、刮画工具人手一套(圆珠笔与削尖的塑料管各一根)。 教学过程: 一、通过故事《垃圾房的苦恼》引出课题。 1、老师作高兴状,提问:小朋友,你们看看,老师的脸上是什么表情?(高兴)今天,老师很高兴,因为有这么多客人到我们幼儿园来作客,小朋友,你们一定也很高兴,个个脸上都笑咪咪的,可是,你们瞧,它的脸上是什么表情? 2、老师出示图片(图片上是愁眉苦脸的垃圾箱)提问:   (1)这是谁呀?它的脸上是什么表情?(不高兴、烦恼)   (2)垃圾房为什么不高兴呢?它有什么烦恼?让我们一起来听听看。 3、放故事磁带《垃圾房的烦恼》。 4、听完故事后提问:小朋友,垃圾房有什么烦恼呀?(幼儿讲述) 5、师:垃圾房有这么多的烦恼,你们有什么好办法帮助它吗?

  • 大班数学活动:保龄球馆课件教案

    大班数学活动:保龄球馆课件教案

    活动目标:1、探索发现将数字10分成两个部分时,可以有不同的结果,并能分出10的所有组数。2、能够在观察的基础上,分析比较多组分和记录的相同点和不同点,并能用符号表示,体验互换、互补关系。3、在游戏活动中巩固10以内数的组成,体验参与活动的乐趣。 活动准备:保龄球若干 记录表 皮球 投影仪 奖品 抽奖箱 活动过程:一、幼儿游戏,记录结果1、引题:乐乐保龄球馆今天开业了,你们想不想去尝试一下?我们先来看看这张记分表,它能告诉我们什么?2、介绍规则:等会三个小朋友一组,请你们商量一下谁先玩,谁记录,谁捡球,商量好了到老师地方领一张记录表,请你看清楚记录表的左上角是数字几,就到几号保龄球馆玩。3、游戏与记录

  • 剧本保密协议范本(文化传媒行业)

    剧本保密协议范本(文化传媒行业)

    甲方:法定代表人:通讯地址:联系方式:乙方:法定代表人:通讯地址:联系方式:本协议所称“双方”指甲方和乙方,“一方”指甲方或乙方。甲乙双方在电影《____》合作中涉及剧本、有关合同、意向书、会议纪要、备忘录、客户名单等具有保密性的信息问题,为避免双方相互提供的己方的秘密信息被对方透露给他人,给双方造成经济损失及其他损失,经友好协商,就相互提供的秘密信息的取得和保密等有关事宜,达成如下协议,以资共同遵守。

  • 设计合同

    设计合同

    甲方: 乙方:xxx广告设计有限公司 1、现就甲方所委托的 设计事项,乙方接受设计委托,就委托事项,双方经协商一致,并依据《中华人民共和国合同法》,签订本合同,双方承诺信守执行:一、委托事项甲方委托乙方进行 共计 项设计事务。具体设计项目有:二、付款方式1.甲方须在合同签订之日起三个工作日内付给乙方 委托设计总费用的50%,合计人民币 (大写: )元整付给乙方,原则上,乙方将在收到甲方的款项后启动相关设计工作。 2.项目设计确认完成后,甲方需在三天内签名或盖章确认(以传真或扫描件方式确认同样有效),确认后甲方应付乙方设计费用的余款 2500( )元整。3.乙方收款账户信息:开户行号:江苏长江商业银行姜堰支行银行卡号:6231 xxx 0198 4662 户名:钱哲辉

  • LOGO设计合同

    LOGO设计合同

    甲方(委托方): 乙方(执行方): xx计机构根据《中华人民共和国合同法》及国家有关法规规定,结合甲方委托乙方设计项目的具体情况,为确保本设计项目顺利完成,经甲乙双方协商一致,签订本合同,共同遵守。一、设计内容及方案数1 、提供LOGO图形设计,中英文标准字设计。2 、提供_____个设计方案,直至满意为止。二、设计周期1 、乙方应在_____个工作日完成设计初稿(双方另行约定的除外)。在_____个工作日完成稿件修改,若甲方校稿时间超过5个工作日或因甲方反复提出修改意见(但乙方设计质量明显不好或不能达到合同要求目的除外)导致乙方工作不能按时完成时,可延期交付时间,延期时间由双方协商确定。2 、如果是乙方单方的原因导致不能如期交付初稿,每日的违约金以百分之三计算,从设计费用里面直接扣除。三、设计费用LOGO设计费用为:人民币¥_______元整(大写:____________________)。 四、付款方式 1 、设计费分 2 次付清。2 、本合同签订后,甲方即向乙方支付合同总费用的40 %,即人民币¥_______元整(大写:____________________)。 3 、LOGO设计完成,甲方应在两天内支付合同余款60 %,即人民币¥_______元整(大写:____________________)。乙方及时交付电子版源文件。

  • 设计协议书

    设计协议书

    依据《中华人民共和国合同法》和有关法规的规定,乙方接受甲方的委托,就委托设计事项,双方经协商一致,签订本合同,信守执行:一、合同内容及要求: 。                          二、设计与制作费用:设计与制作费用总计为:人民币¥ 元,(大写: 元整)。 三、付款方式:1、甲方需在合同签订时付委托设计与制作总费用的 %,即人民币¥ 元整,(大写: )。3、乙方将设计制作图交付甲方时,甲方需向乙方支付合同余款,即人民币¥ 元整,(大写: )。 四、设计与制作作品的时间及交付方式:

  • 高教版中职数学基础模块下册:8.3《两条直线的位置关系》优秀教案设计

    高教版中职数学基础模块下册:8.3《两条直线的位置关系》优秀教案设计

    教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(一) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内两条直线的位置关系有三种:平行、相交、重合.并且知道,两条直线都与第三条直线相交时,“同位角相等”是“这两条直线平行”的充要条件. 【问题】 两条直线平行,它们的斜率之间存在什么联系呢? 介绍 质疑 引导 分析 了解 思考 启发 学生思考*动脑思考 探索新知 【新知识】 当两条直线、的斜率都存在且都不为0时(如图8-11(1)),如果直线平行于直线,那么这两条直线与x轴相交的同位角相等,即直线的倾角相等,故两条直线的斜率相等;反过来,如果直线的斜率相等,那么这两条直线的倾角相等,即两条直线与x轴相交的同位角相等,故两直线平行. 当直线、的斜率都是0时(如图8-11(2)),两条直线都与x轴平行,所以//. 当两条直线、的斜率都不存在时(如图8-11(3)),直线与直线都与x轴垂直,所以直线// 直线. 显然,当直线、的斜率都存在但不相等或一条直线的斜率存在而另一条直线的斜率不存在时,两条直线相交. 由上面的讨论知,当直线、的斜率都存在时,设,,则 两个方程的系数关系两条直线的位置关系相交平行重合 当两条直线的斜率都存在时,就可以利用两条直线的斜率及直线在y轴上的截距,来判断两直线的位置关系. 判断两条直线平行的一般步骤是: (1) 判断两条直线的斜率是否存在,若都不存在,则平行;若只有一个不存在,则相交. (2) 若两条直线的斜率都存在,将它们都化成斜截式方程,若斜率不相等,则相交; (3) 若斜率相等,比较两条直线的纵截距,相等则重合,不相等则平行. 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 思考 理解 带领 学生 分析 引导 式启 发学 生得 出结 果

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

上一页123...378379380381382383384385386387388389下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。