新知讲授(一)——古典概型 对随机事件发生可能性大小的度量(数值)称为事件的概率。我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型。即具有以下两个特征:1、有限性:样本空间的样本点只有有限个;2、等可能性:每个样本点发生的可能性相等。思考一:下面的随机试验是不是古典概型?(1)一个班级中有18名男生、22名女生。采用抽签的方式,从中随机选择一名学生,事件A=“抽到男生”(2)抛掷一枚质地均匀的硬币3次,事件B=“恰好一次正面朝上”(1)班级中共有40名学生,从中选择一名学生,即样本点是有限个;因为是随机选取的,所以选到每个学生的可能性都相等,因此这是一个古典概型。
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
1.直观图:表示空间几何图形的平面图形,叫做空间图形的直观图直观图往往与立体图形的真实形状不完全相同,直观图通常是在平行投影下得到的平面图形2.给出直观图的画法斜二侧画法观察:矩形窗户在阳光照射下留在地面上的影子是什么形状?眺望远处成块的农田,矩形的农田在我们眼里又是什么形状呢?3. 给出斜二测具体步骤(1)在已知图形中取互相垂直的X轴Y轴,两轴相交于O,画直观图时,把他们画成对应的X'轴与Y'轴,两轴交于O'。且使∠X'O'Y'=45°(或135°)。他们确定的平面表示水平面。(2)已知图形中平行于X轴或y轴的线段,在直观图中分别画成平行于X'轴或y'轴的线段。(3)已知图形中平行于X轴的线段,在直观图中保持原长度不变,平行于Y轴的线段,在直观图中长度为原来一半。4.对斜二测方法进行举例:对于平面多边形,我们常用斜二测画法画出他们的直观图。如图 A'B'C'D'就是利用斜二测画出的水平放置的正方形ABCD的直观图。其中横向线段A'B'=AB,C'D'=CD;纵向线段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,这与我们的直观观察是一致的。5.例一:用斜二测画法画水平放置的六边形的直观图(1)在六边形ABCDEF中,取AD所在直线为X轴,对称轴MN所在直线为Y轴,两轴交于O',使∠X'oy'=45°(2)以o'为中心,在X'上取A'D'=AD,在y'轴上取M'N'=½MN。以点N为中心,画B'C'平行于X'轴,并且等于BC;再以M'为中心,画E'F'平行于X‘轴并且等于EF。 (3)连接A'B',C'D',E'F',F'A',并擦去辅助线x轴y轴,便获得正六边形ABCDEF水平放置的直观图A'B'C'D'E'F' 6. 平面图形的斜二测画法(1)建两个坐标系,注意斜坐标系夹角为45°或135°;(2)与坐标轴平行或重合的线段保持平行或重合;(3)水平线段等长,竖直线段减半;(4)整理.简言之:“横不变,竖减半,平行、重合不改变。”
1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。
问题导入:问题一:试验1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币正面朝上”。事件A的发生是否影响事件B的概率?因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率。问题二:计算试验1中的P(A),P(B),P(AB),你有什么发现?在该试验中,用1表示硬币“正面朝上”,用0表示“反面朝上”,则样本空间Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率计算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)积事件AB的概率恰好等于事件A、B概率的乘积。问题三:试验2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异。
1.圆柱、圆锥、圆台的表面积与多面体的表面积一样,圆柱、圆锥、圆台的表面积也是围成它的各个面的面积和。利用圆柱、圆锥、圆台的展开图如图,可以得到它们的表面积公式:2.思考1:圆柱、圆锥、圆台的表面积之间有什么关系?你能用圆柱、圆锥、圆台的结构特征来解释这种关系吗?3.练习一圆柱的一个底面积是S,侧面展开图是一个正方体,那么这个圆柱的侧面积是( )A 4πS B 2πS C πS D 4.练习二:如图所示,在边长为4的正三角形ABC中,E,F分别是AB,AC的中点,D为BC的中点,H,G分别是BD,CD的中点,若将正三角形ABC绕AD旋转180°,求阴影部分形成的几何体的表面积.5. 圆柱、圆锥、圆台的体积对于柱体、锥体、台体的体积公式的认识(1)等底、等高的两个柱体的体积相同.(2)等底、等高的圆锥和圆柱的体积之间的关系可以通过实验得出,等底、等高的圆柱的体积是圆锥的体积的3倍.
(2)平均数受数据中的极端值(2个95)影响较大,使平均数在估计总体时可靠性降低,10天的用水量有8天都在平均值以下。故用中位数来估计每天的用水量更合适。1、样本的数字特征:众数、中位数和平均数;2、用样本频率分布直方图估计样本的众数、中位数、平均数。(1)众数规定为频率分布直方图中最高矩形下端的中点;(2)中位数两边的直方图的面积相等;(3)频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数。学生回顾本节课知识点,教师补充。 让学生掌握本节课知识点,并能够灵活运用。
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.
6.例二:如图在正方体ABCD-A’B’C’D’中,O’为底面A’B’C’D’的中心,求证:AO’⊥BD 证明:如图,连接B’D’,∵ABCD-A’B’C’D’是正方体∴BB’//DD’,BB’=DD’∴四边形BB’DD’是平行四边形∴B’D’//BD∴直线AO’与B’D’所成角即为直线AO’与BD所成角连接AB’,AD’易证AB’=AD’又O’为底面A’B’C’D’的中心∴O’为B’D’的中点∴AO’⊥B’D’,AO’⊥BD7.例三如图所示,四面体A-BCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=2.求EF的长度.解:取BC中点O,连接OE,OF,如图。∵E,F分别是AB,CD的中点,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE与OF所成的锐角就是AC与BD所成的角∵BD,AC所成角为60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1当∠EOF=60°时,EF=OE=OF=1,当∠EOF=120°时,取EF的中点M,连接OM,则OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
第一个感谢,要感谢新市镇政府,在这样一个空气中都夹杂着疫情的日子里,依然能想到我们教师,尤其是像我们这样一所默默无闻的私立学校,仍然给了我们这么一个好的平台,让我们感受到原来温馨就一直萦绕在我们身边。 第二个感谢,要感谢我自己的老师们,正是因为他们的辛勤教育,才有了我的今天,所以,在第25个教师节来临之际,无论他们身在何处,我也要对他们说一句:老师们,你们辛苦了。
(一)社会安全教育 1.了解在公共场所活动时的安全常识,遵守公共规则,避免扰乱公共秩序行为的发生。 2.认识与陌生人交往中应当注意的问题,逐步形成基本的自我保护意识。 3.了解社会安全类突发事故的危险和危害,提高自我保护能力。引导学生形成基本的自我保护意识。
二、活动目标根据以上的分析和思考及大班幼儿的年龄特点,我从认知、情感、能力三方面来制定这次活动的目标。1、在观察、探索中了解彩虹现象的由来。2、尝试用多种方法制造“彩虹”,产生对自然界奇妙现象的兴趣。3、愿意与同伴交流,分享探索的过程。4、根据目标:我的活动重点是在观察、探索中了解彩虹现象的由来。活动难点是尝试用多种方法制造“彩虹”,产生对自然界奇妙现象的兴趣。三、活动准备为了使活动呈现出趣味性、综合性,寓教育于生活情境中、游戏中,我做了以下的准备:1、选择一个明媚的日子。2、课件一份,镜子人手一份,盆中装满水,圆珠笔,色拉油,白纸,三棱镜,放大镜,泡泡。四、活动过程根据幼儿的年龄特点,我设计了以下五个环节:引起幼儿的兴趣——迁移经验,了解彩虹的由来——学习动手制造“彩虹”——交流实验结果——延伸活动。我是让孩子们在操作探索中亲身体验,了解彩虹现象的由来,克服重点和难点。具体过程如下:(一)引起幼儿的兴趣。我通过以下三个小环节来实施:1、幼儿自由玩镜子。幼儿在玩中和同伴说说从水中的镜子中找到了什么?2、引导幼儿在水中把镜子对着太阳照射。3、说说自己的发现。数一数有几种颜色?它们是怎么排列的?我开始的直接提问是让孩子们拿着镜子在水中自由玩耍,讨论自己的发现,幼儿讨论的问题肯定不充分,之后我用语言提示他们“在水中把镜子对着太阳照一照”,这样有目的的引导,让他们自己去发现“彩虹”这一奇妙的自然现象:镜子中能反射出七彩的颜色。(二)了解彩虹的由来。这一环节我出示雨中、雨后的课件制作,让幼儿观看课件彩虹是怎么产生的,最后得出结论:彩虹是夏天雷雨过后出现的自然现象,是天空中飘着许多的小水滴经过阳光照射后形成的,彩虹是红、橙、黄、绿、青、蓝、紫这样排列的。屏幕上雨后的课件鲜艳的颜色刺激着小朋友的感官,使他们的手、脑、眼、嘴并用,每个孩子都能全身心的融入学习中。(三)学习动手制造“彩虹”。前一环节的介绍,幼儿对“彩虹”的由来产生了浓厚的兴趣,教师可以这样引导“这么漂亮的彩虹一会就没有了,怎么办呢?”我直接把问题抛给幼儿,让他们想办法解决,孩子们肯定会说:“我们可以自己做一条‘彩虹’呀?那怎么制造‘彩虹’呢?”带着这个问题,让孩子们自己寻找材料,如:泡泡、放大镜、三棱镜、圆珠笔、白纸……幼儿自由地尝试用多种方法制造“彩虹”,教师用问题设置的方法边观察幼儿操作,边及时地提出问题进行引导,幼儿在尝试操作过程中交流、合作。本环节是运用了尝试法和操作法,也是活动的难点之处。
2、目标定位:根据大班幼儿年龄特点及实际情况以及布鲁纳的《教育目标分类学》为依据,确立了认知、能力、情感等方面的目标,融合了语言、科学、社会、艺术领域的整合。目标为:(1)通过各种方法引导幼儿发现自己的成长与变化。(2)激发幼儿欣赏自己的成长,展示自己的能力,树立自信心。(3)乐于与同伴交流、分享自己成长的快乐。(4)让幼儿尝试制作个人成长册,发展幼儿的精细动作。(5)让幼儿体会父母的辛苦、关心,增进亲子之情。根据目标,我把活动重点定位于:感受“我长大了”,主要是发现自己成长与变化。通过观察、比较小时候的照片和用品、播放录像、交流分享、展示自己,使活动得到深化。活动的难点是:根据人的成长过程进行排序、制作个人成长册,主要是通过自主操作,在动手的过程中培养手部肌肉的灵活性和提高排序的能力,对自己的成长充满了期待。在目标定位上,树立了目标的整合观、科学观、系统观,各领域内容有机联系,相互渗透,注重综合性、趣味性、活动性,寓教育于生活、游戏中。因此,我作了以下活动准备:(1)空间准备:幼儿小时候的照片、衣物、用品布置于墙上,桌椅呈同字型便于评价和集中。(2)物质准备:“人的成长过程”图片,卡片纸、彩笔、彩纸、剪刀、胶水等美工材料与工具若干,已制作本领树的树干,小时候的录像(或小中班在园的录像),胎儿的生长发育以及新生儿的养育的录像。(3)知识准备:幼儿向家长了解爸爸妈妈的故事及自己小时候的趣事,观察各个阶段自己成长的照片,熟悉人物主要特征。
一、说教材: 本课是部编《道德与法治》三年级上册第一单元“快乐学习”中的第三课,本课作为本单元最后一课,在前两课“明确学习的意义” 、“体验学习的快乐”的基础上,重点培养学生“掌握学习的方法”,与本单元的前两课是递进关系,符合学生的认知与学习规律。本课针对培养学生养成良好学习习惯,掌握合适的学习方法 而设置 ,共设计了四个话题,“人人都能学得好”“多在心中画 问号”“我和时间交朋友”“好经验共分享” ,四个话题各有侧重,话题之间没有逻辑上的紧密联系,可根据需要进行灵活地调整与重组,现将第一、第二、第四个话题在第一课时完成,重点帮助学生树立学习信心,掌握有效学习方法,第三个话题在第二课时完成,帮助学生了解合理安排时间的好处以及方法,养成良好学习习惯。
我今天说课的内容是选自幼儿园建构式课程中班下册科学教育活动《我爱大树和小花》。《新纲要》科学领域目标中明确提出了:培养幼儿爱护动植物,关心周围环境,亲近大自然,珍惜自然资源,有初步的环保意识。在我们生活的周围有各种各样的树和花,对于孩子来说既熟悉又陌生,每每在户外活动时孩子总会不经意地去看看、摸摸,有时还会说一句,如:这颗树好大哦,这朵花好漂亮哦,有时候还会进行追问,如:这颗叫什么树,这叫什么花……然而随着社会的进步人类慢慢淡化了对身边花草树木的爱护,甚至亲手破坏身边的环境,如:乱砍树木,乱摘花朵……结合中班建构式课程中的主题教学《大树和小花》的内容,我设计了符合中班幼儿年龄特点的教学活动《我爱大树和小花》,引导幼儿要保护身边的花草树木,清楚花草树木与人类的关系以及对人类的作用。通过挂图与教材的阅读理解保护花草树木的重要性,从而萌发幼儿爱护花草树木的情感。
新《纲要》中科学领域提出了:对周围事物和现象感兴趣,有好奇心和求知欲:能运用各种感官,动手动脑,探究问题的目标。《小树叶找妈妈》这一活动是在平时到户外散步的时候,小朋友对树叶产生了浓厚的兴趣,所以结合本季节开展的主题:金色的秋天,我设计了一系列关于树叶的活动,本次活动就是其中之一。“从幼儿身边最熟悉的事物出发”是瑞吉欧教育理念之一,在开展活动的过程中,我们细致地观察、倾听幼儿的言行,及时捕捉他们的兴趣点,以及他们的日常生活为基础,贴近幼儿自身的经验进行自然而然的引发,层层深入开展活动。我们鼓励他们以自己喜欢的方式来表现,从不同角度出发,通过各种手段来发现问题。在摆摆说说的活动中,他们的想象力发展了,会用自己的话语描述对家的认识。
“幼儿关注和发现生活中的科技成果。”这个目标属于科学领域的范畴。《纲要》中提出:从生活或媒体中幼儿熟悉的科技成果入手,引导幼儿感受科学技术对生活的影响,培养他们对科学的兴趣和对科学家的崇敬。这里提到了几个关键词:生活、熟悉,可见我们选择的科技成果的内容应该是从孩子的生活出发,为幼儿所熟悉的。 根据这个指导思想,我选择了“手机”,因为现在的家庭中至少有两部手机,有的甚至更多,孩子用手机打过电话、拍过照片、玩过游戏、听过音乐,他们对手机有一定感性认识,教师把课的重点定位在引导幼儿感受科学技术对生活的影响。 手机作为现代科技成果有着自己独特的功能,它相比于固定电话在外形上更为轻巧,携带方便,使人们随时随地都可以使用它,在功能上比固定电话更为齐全,除了最大的功能:打电话外,还附加了照相机、摄像机、随身听、游戏机、闹钟,甚至电脑的功能。但作为小班第一学期进行的教学内容,我选择了幼儿最为熟悉的两大功能:打电话与拍照入手,引导幼儿去关注和发现手机的其它功能,让孩子感受科学技术对生活的影响。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。