3、整理数据,确定思路。在此认知基础上,紧接着引申出进一步研究的问题“各条跑道的起跑线应该相差多少米?”这个问题很难通过观察得到,需要学生收集相关数据,具体分析起跑线的位置与什么有关。使学生在汇报的过程中自然的发现:要确定跑道的起跑线,只要算出每相邻两条跑道的长度差就可以了。有的学生说,由于跑道的直道长度是相同的,所以算出弯道的长度差就可以了。在这里,教师或学生还可就图片说明半圆形跑道的直径是如何规定的,也就是里圆的直径加上两个跑道的宽度,以及跑道线的宽在这里忽略不计等问题向其它学生作一具体说明。在些环节,让学生进行观察,让他们自己发现规律,培养他们抽象概括能力和语言表达能力,在这个环节中教师要灵活的驾驽课堂,及时的抓住课堂中新生成的问题,使问题得以提升,把课堂推向了高潮.
三、巩固练习,拓展应用练习是学生领悟知识,形成技能,发展智力的重要手段,我遵循“由浅入深,循序渐进”的原则设计了以下不同层次的练习。1、基本练习自主练习第1题填一填,借助直观图,巩固分数乘法的意义和计算方法。2、提高练习自主练习2、4题。本题的设计,目的是使学生除了掌握基本的数学知识和技能外,初步学会从数学的角度去观察事物、思考问题,同时,也让学生感受到生活中处处有数学,从而激发对数学的兴趣,以及学好数学的愿望。四、课堂小结,升华认识引导学生回忆总结:这节课你们都知道了些什么?你有哪些收获?这节课你表现得怎样?等等,这样的小结有利于学生巩固本节课的重点,获得成功的体验,激发学习的热情。五、板书设计:简单明了,能系统地反映出本课的重、难点。有利于学生形成一定的知识网络。都起到了“画龙点睛”的作用。
第一:导课。在这个环节中,首先对学生提出《课堂常规》要求,以对口令、比一比的形式,让学生了解《常规》、遵守《常规》;再复习8、9的组成,为熟练口算扫清障碍。第二:新课。1、结合情境,引导学生充分感受“一图四式”。由于学生已经有了看一幅图列出两个算式的基础,所以列出加法算式相对容易一些,而列出减法算式则是这部分的难点。因此我采用小组合作的方式,让学生以看图说话的方式搜集相关数据,初步感知根据一幅图可以列出四道不同的算式。2、在老师的指导下进行操作,通过摆苹果图使学生进一步巩固和理解“一图四式”。在计算过程体现加减法之间的联系。3、帮助学生积累计算方法,为学生提供创造的空间。直接出示算式5+3、3+5、8-3、8-5计算,提问:你是怎样算出得数的?鼓励学生说出多种计算方法,使计算方法多样化(如:数数、想数的组成与分解、调换加数的位置、算减法想加法等)。
教学重难点及突破措施:本节课的重点是能够正确计算得数是6、7的加减法,掌握计算方法。难点是感受数学知识与生活的紧密联系,能用6、7的加减法列式解决问题。对于教材重难点的确定,我是通过如下个方面的分析得出的:1、从教材知识点分析:6和7的加减法在生活中应用广泛,同时它又是进一步学习8和9以及10的加减法的最直接的基础。2、从学生心理特点和认知规律来分析:学生的思维能力和语言表达能力不是很强,通过观察的不同角度,能够列出不同的算式。一、复习6、7的组成及分解在上课之前,我先让学生背诵6 、7的组成及分解。这个内容在上《6和7的认识》这一课时时就已经让学生学习。在上新课前让学生背诵,一是让学生复习巩固以前的知识,二是为接下来计算6、7的加减法时做好铺垫。
小组交流汇报: ①、20以内加减法知识 教师结合学生的问题,引导学生运用不同的方法得出各项活动的总人数,对于有道理的都予以肯定。如结合“踢球有多少人?”可以有多种方法: 生1:从图上看到守门的有1人,踢球的有的14人,求一共有多少人?列式为1+14=15(人) 生2:黄队有7人,蓝队有8人,求一共有多少人?列式为7+8=15(人) 生3:戴帽子的队员有1人,没戴帽子的有14人,一共有多少人?列式为1+14=15(人) ②、几和第几的知识 师:刚才有小朋友提出跑步的分别是第几名?小朋友们就来当一回裁判,老师指着哪一位小运动员,你们就举起手中“第几”的卡片来说说他们的名次。 (三)尝试统计 按学生对活动的喜好将学生分成五组。 每小组统计所学活动的人数,用笑脸图片表示,最后每一组把笑脸图贴到教师出示的大统计图上。
二、说教学目标、教学重难点我对教材的认识,以及学生的年龄特点,我确定的教学目标有3个:知识与技能目标:让使学生经历编5的乘法口诀的过程,进一步理解乘法的意义,掌握5的乘法口诀,提高应用乘法解决实际问题的能力。过程与方法目标:使学生在编口诀和用口诀的过程中,初步培养发现简单规律的能力,积累积极的学习情感,增强学习数学的自信心。情感与态度目标:让学生通过数学活动进一步体会数学在现实生活中的应用,增强学习数学的积极情感,并获得成功的体验,提高学好数学的信心。教学重点是:经历编口诀的过程,理解每句口诀的含义;难点是:学生自己尝试探究并得出5的乘法口诀。三、说教法学法接着,我说说本课采用的教学方法。围绕本课的教学目标和教学重难点,我采用了设置问题情境、激发学习兴趣与组织学生动手实践相结合的方法。
2.能力目标:在活动中培养学生从具体到抽象,再从抽象回到具体的思维方法。培养观察、操作、表达、思维能力与探索意识,发挥学生的想像力、创造力,激发学生的审美观点,培养学生创造美的能力。3.情感目标:让学生在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发学生学好数学的欲望。教学重点:认识轴对称图形的基本特征,dj舞曲,会找对称轴。三、教法学法1、在教法上,为了将课堂还给学生,让课堂散发生活活力,营造学生在教学活动中独立自主的学习时间和空间,使他们成为课堂教学过程中的参与者和创造者,本着这样的知道思想,本节课我采用了多种教学方法相结合的方式,如:情境教学法、观察比较法、引探教学法、迁移类推法等。通过教师适时的"引"来激发学生主动的"探",通过教师恰如其分的"放"来指导学生独立自主的"学",使师声双边产生共鸣和谐发展!
学情分析:本节课的教学内容是长度单位米,。尽管学生有这方面的经验和基础,但是长度单位米的建立还是比较难的,在教学中应根据学生特点,通过实践操作活动建立1米的观念。教学目标:1、使学生认识长度单位米,初步建立1米的长度观念,并学会用米测量物体的长度。知道1米=100厘米。2、培养学生观察能力、动手操作能力、空间想象能力和团结合作意识。教学重点:使学生认识长度单位米,初步建立1米的长度观念。知道1米=100厘米。教学难点:在实际操作过程中用米测量物体的实际长度。教具学具准备:米尺、学生尺、10厘米长的纸条、绳子等教学过程:一、创设情景,引起认知冲突。师:同学们,上节课我们学习了用什么作单位去量物体的长度?(厘米)上节课的内容大家都掌握得不错,谁能用学过的知识帮老师量量黑板的长?
【教学设想】《课程标准》指出:“实践活动是培养学生进行活动探索与合作交流的重要途径。”在这一理念的支持下,我设计了以小组为单位进行测量实践活动。一、将学生个体间的学习关系改变为“组内合作”学习的关系。通过让学生小组合作活动学习,培养学生的合作意识、集体观念,培强了学生对集体的责任感受和荣誉感。二、根据学生的实际情况,我合理选取活动素材,向学生提供了具体有趣、富有一定启发性的活动。全课共有四部分:第一部分,课前律动;课堂开始配以儿童喜欢的音乐,让学生在轻松愉悦中进入课堂。第二部分,复习旧知、引入新课;通过对前面所学知识的复习,加深对长度单位“厘米”和“米”的认识。第三部分,活动体验、寓教于乐;这一部分共五个层次;第一层,选取了比较容易的活动,在木条上测量一米的长度,巩固用尺子测量物体长度的方法;第二层,小组分工合作测量与同学们朝夕相处的课桌的长、宽、高这一实际问题,渗透了合作方法;
二、说教法学法教师的教是为了学生更好的学。计算教学都是从简单到复杂螺旋上升的,最基础的计算原理和方法支持了这样的发展提高。本节课的教学以学生喜爱的卡通人物为背景,通过探索卡通人物的秘密,来激发学生的学习兴趣。然后通过比赛等形式,引导学生动脑,动眼,使学生变苦学为乐学,把数学课上的有趣、有益、有效。在教学例题时,让学生尝试计算三位数乘两位数的笔算方法,鼓励学生自己算。学生已经能笔算三位数乘一位数和两位数乘两位数。与三位数乘一位数相比,三位数乘两位数需要多乘一步,并把两次的部分积相加。充分利用学生己有的计算知识和经验,把新旧知识结合在一起,体会计算时的相同点,促进认知同化,完善认知结构。三、说教学目标1、知识技能目标:让学生经历探索三位数乘两位数计算方法的过程,掌握三位数乘两位数的笔算方法,能正确地进行计算。
1、基础题:妈妈煎鱼,一次锅里最多能煎3条鱼,每煎一面要4分钟,怎样才能最快煎鱼完9条鱼?(学生独立练习,指明一个学生板书,并说说解答的思路过程)2、提高题:在上题的基础上,把问题改成:怎样才能最快煎鱼完8条鱼?(学生发现总共16个面,16除以3等于5次还余1个面,那怎么办呢?可让学生讨论交流,余下的一个面还要煎一次,也就是5+1=6次,再用6乘4得到最快要24分钟。)当次数出现有余数时,我们采用进一法再加一次,公式还是成立。3、拓展题:那么怎样才能最快煎好15条?47条?100条鱼呢?[设计意图]经练习中巩固和验证了总结的规律,在练习的不同层次上满足了不同学生的学习需求,同时让学生感受到了数学与生活的密切联系,提高了学生解决实际问题的能力。四、归纳总结,提出希望。今天的这节课同学们有什么收获啊?生活中处处都有数学,只要同学们有一双善于观察和发现的眼睛,积极动脑思考,你一定会有收获。
同时又大大地节省了教学时间,提高了课堂效率。第五个层次:尝试制作复式条形统计图教师导语:在我们的生活中经常都会用到“复式条形统计图”,下面是四年级同学参加体育活动项目的情况统计表,大家有兴趣根据其中提供的信息制作一张复式条形统计图吗?展示书119页例题3,1、让学生观察统计表,读取其中信息2、让学生根据信息补充统计图。让学生一边说,老师一边用课件演示涂色过程。对于此处教学,我们所做统计图都是提供了横轴和纵轴的,学生只需读取信息,在表格中画出相应的直条。所以难度大大降低。可以说是一种半放手的“制作过程”,同时教学中让学生说,老师演示,也是一个半放手的教与学。只是为下一环节中,学生完全有自己独立收集数据,选取颜色画直条补充统计图搭脚手架。
二、探究交流,引导概括 —— 方程为了培养学生的发现和抽象概括能力,同时进一步理解方程的意义,我让学生分组学习,引导他们先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄等式的有共同特征,然后归纳概括什么叫做方程?最后得出:像这样的含有未知数的等式,叫做方程。三、讨论比较,辨析、概念 —— 等式与方程的关系为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过四人合作用自己的方法创作 “ 方程 ” 与 “ 等式 ” 的关系图,并用自己的话说一说 “ 等式 ” 与 “ 方程 ” 的关系:方程一定是等式,但等式不一定是方程。四、巩固深化,拓展思维 —— 练习1 、“做一做”:2、判断是否方程3、“方程一定是等式,等式也一定是方程”这句话对吗?4、叫学生用图来表示等式和方程的关系。
一、创设情境,引入新课。课开始,首先通过谈话问学生“你们喜欢玩游戏吗?”随后呈现例题的情境图,让学生在观察中清楚的知道袋中有4个红球和2个红球。然后教师揭示摸球游戏的规则:每次任意摸一个球,摸好后放回袋中,一共摸30次。摸到红球的次数多算小明赢;摸到黄球的次数多算小玲赢。接着让学生猜一猜谁赢得可能性大一些。预设学生都会猜是小明赢得可能性大一些。然后组织学生在小组里进行摸球实验,并把摸的结果记录在书本例题的第一个记录表中,验证刚才的猜想。在学生操作完之后,让学生明确小明赢得可能性大一些。接着引导学生产生质疑:“这样的游戏公平吗?为什么?”引导学生小结:口袋中红球的个数比较多,所以每次任意摸一个球,摸到红球的可能性要大,最后小明赢得可能性也就相应地要大一些,这样摸球的游戏规则是不公平的。在此基础上揭示课题并板书:游戏规则的公平性。
为什么B和C的答案都对呢?(因为比还可以写成分数的形式,但是读还是读做几比几。)4、判断:(1)小明今年10岁,爸爸37岁,父亲和儿子的年龄比是10∶37。(2)一项工程,甲单独做要7天完成,乙单独做要5天完成,甲乙两人的工作效率比是7∶5。(3)大卡车的载重量是6吨,小卡车的载重量是3吨,大小卡车载重量的比是2。【2】第二层练习1、写出比值是2的比。【3】随机练习(看时间情况定)小明今年12岁,是六年一班学生,该班共有42个学生,小明爸爸今年38岁,在保险公司上班,每月工资1000元,年薪12000元,小明妈妈每月工资800元,年薪9600元,她所在单位有职工24人。要求:根据题目中提供的条件,寻找合适的量,说出两个数之间的比。五、课堂总结,拓展延伸。1、这节课学习了什么知识?你有什么收获?2、你能说出一些生活中的关于比的例子吗?(学生举例)
学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)
教学内容:复习100以内的数。(教材第98页第1~4题。)教学目标:(1) 认识计数单位“一”和“十”,理解个位、十位上的数所表示的意义,能够熟练地数100以内的数,会正确读写100以内的数,掌握100以内数的组成。(2) 掌握100以内数的顺序,会比较100以内数的大小。会用100以内的数来表达和交流。(3) 在复习过程中,感受100以内数的应用意义,感受数学与生活的密切联系。教学重点:会读写100以内的数,并能进行简单数的大小比较。教学难点:数位顺序及数位上数的意义。教学准备;计数器。教学过程:一、复习数位出示计数器。(1) 计数器从右边数起,第一位是什么位?第二位是什么位?第三位是什么位?个位上的一颗珠子表示几个几?十位上的1颗珠子表示几个几?百位上1颗珠子表示几个几?(课件演示)(2) 为什么都是1颗珠子,所表示的数不同呢?(3) 10个一是多少?10个十是多少?100里面有几个一?
一、回顾旧知,复习铺垫1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?2、判断下面每组中的两个比是否能组成比例?为什么?6:3和8:4 : 和 :3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)二、引导探索,学习新知1、什么叫解比例?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。2、教学例2。(1)把未知项设为X。解:设这座模型的高是X米。(2)根据比例的意义列出比例:X:320=1:10(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。根据比例的基本性质可以把它变成什么形式?3x=8×15。这变成了什么?(方程。)教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。
教学时间:教学准备:小黑板,挂图。教学过程:一、复习旧知,引入新课。1、请大家想一想到今天为止,我们已经复习了本学期学过的哪些知识?(表内除法。万以内数的认识和加法、减法。克和千克及图形的变换。)2、对这些知识还有没有什么问题?还有没有内容是我们没有复习到或复习了掌握不好的?如果学生有问题,则针对问题,让同学们一起来想办法解决这些问题。学生提出问题,思考解决方法。二、复习整理:1、分别出示教材第122页第13、14题的挂图。(如果没有,就让学生直接看书)(1)看了图后,你明白图中的画是什么意思吗?学生看挂图,小组讨论这两题的意思。叙述两幅图的意思,没有说好的请其他同学来补充完整。在小组内讨论交流。(2)怎样来解决这两个生活中的实际问题?
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。(6)引导学生观察:A、从0起往右依次是?从0起往左依次是?你发现什么规律?B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?(7)练习:做一做的第1、2题。(二)教学例4:1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。