解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
我说课的内容是人教版小学数学四年级上册第一单元第21页的内容——《亿以上数的认识》。下面我将从说教材、说目标、说教法和学法、说教学程序、课堂回眸五个方面进行阐述。一、说教材《亿以上数的认识》,是在学生认识和掌握万以内数的读法和写法基础上学习的。也是为进一步学习亿以上数的写法打基础。生活中大数广泛存在,亿以上数的认识既是万以内数的认识的巩固和拓展,也是学生必须掌握的最基本的数学基础之一。通过地球不堪人口之重负的拟人素材,生动地引入世界人口总数,让学生感受大数、学习亿以上数的读法的同时了解到地球上人口太多了,如不控制将要威胁到人类的生存环境,渗透有关人口知识和环境保护教育。二、说目标(基于对教材以上的认识及课程标准的要求,结合学生的年龄特征,将本节课的教学目标为:)
在尊重学生已有的知识与经验基础上,努力营造一个充满“磁性”的课堂环境。着眼与培养学生的创新素质,作好学生学习活动的组织者、引导者、参与者,使每一名学生都能得到不同程度的发展。二、教材分析1.教材的地位和作用说课的内容是人教版六年级上分数乘法的应用题,分数乘法单元中求一个数的几分之几是多少的简单应用题。拟引导学生在提出和解决实际问题的过程中,学习“求一个数的几分之几是多少”的问题的解答方法。是在初中第一个培养学生应用意识的问题,能开发学生的创新思维,也是后面分数除法应用题的基础。《数学课程标准》倡导学习大众的、现实的、有价值的数学理念,因此教师在教学中,应该从学生熟悉的生活现实出发,让学生由具体的问题引入现实情境。将解决现实问题与学习分数乘法的知识相结合,帮助学生理解分数乘法应用题的计算方法,有利于培养学生解决实际问题的意识和能
教材分析这部分内容是在认识钟表上的整时、半时的基础上进一步认识钟面上的时、分。分是非常重要的时间单位,也是进一步学习年、月、日的基础。时间单位不像长度、质量单位那样容易表现出来,比较抽象,学生不容易理解。所以,应以学生的生活经验为基础,把学习内容与学生的生活实际密切联系起来,进行教学。“我们赢了”是结合“北京申奥成功”这一情境,让我们记住这一历史时刻——2001年7月13日晚上10时08分。用记载着这一历史时刻的钟面,引导学生交流自己对钟面的认识,激活学生已有的生活经验;同时,抓住机会渗透爱国主义教育,引导学生关注社会,关心时事。学情分析学生在一年级时已经学过了钟面的简单知识并会认识整时和整时半。但有关时间的认知显得有些混乱,对时针和分针表示的意义分辨不清,多数孩子还不能读出准确的时刻。
【反思】本节课的教学注重体现了情境教学在教学中的运用。课堂上体现了这样几个特点:1.数学知识与生活实际相结合。数学来源于生活,生活中处处有数学。小学生对熟悉的生活情境和事物感兴趣。所以我从他们熟悉的事物中寻找教学题材,设计了有趣的情景教学。让学生感到数学知识就在他们身边,感到数学的作用,设计了作息时间表。这样,既巩固了时间的知识。又可以教育学生在生活中要合理安排时间,不要浪费时间,做时间的主人。2.注重在学习中自主探究,合作交流。在教学《时间的计算》时,让学生用自己制作的学具表亲自动手拨一拨,想一想让他们主动尝试自主发展。教学例2时让他们小组合作交流学习方法。这些都体现了培养学生的能力.自主探究的精神。
一、说教材。《秒的认识》是义务教育课程标准实验教科书(人教版)三年级上册第59页~第61页的教学内容。《秒的认识》是在学生已经认识了时、分的基础上进行教学的。本课教材从材料的选择到呈现方式,都注意结合学生的生活经验,力求让学生在实际情境中,知道秒的意义,探索分与秒的进率关系,体验1分、1秒的长短,初步建立1秒、1分的时间观念。根据本课的设计理念,结合学生的实际,我确定了以下教学目标:1、知识与能力目标:让学生初步建立秒的时间观念,知道1分=60秒。2、过程与方法目标:经历联系实际生活解决简单问题的过程,初步培养学生的观察、交流、合作、探究能力,并有效地促进个性思维的发展。3、情感态度目标:让学生充分感受数学与生活的密切联系,激发学生积极、愉悦的数学情感,并适时对学生进行珍惜时间和爱国主义教育。根据本阶段学生的心理特点以及认知起点,我认为本节课的教学重点、难点是:重点:认识时间单位秒,知道1分=60秒。
一、教材分析及学生分析:数学课程标准在各个学段中,安排了“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”四个学习领域。其中“统计与概率”中统计初步知识在一、二年级已经涉及,但概率知识对于学生来说还是一个全新的概念,它是学生以后学习有关知识的基础,并且概率问题是一个与社会生活关系密切的重要问题。因此在第一学段中对于“不确定现象”由感性升华到理性认识非常重要。对于三年级的孩子来说,由于他们的年龄和思维特点,他们一般只能在感性的层面理解可能性的知识,因此,在教学中,我们密切关注并考虑学生已有的经验知识,在学生已有的经验体会的基础上,设计各种活动丰富学生的经验积累,从而进行可能性知识的构建。
一、说教材:对于毫米学生虽然没有正式学过,但他们每人的学生尺上都有毫米的刻度,可以说有了一些感性的认识。分米的认识与毫米的认识在编排上类似,主要通过直观和操作帮助学生建立1分米的长度观念。因此,我认为本节课的重点是建立1毫米、1分米的长度概念,会用毫米、分米做单位量出物体的长度。而毫米、分米概念的形成过程和在实际测量中的灵活应用又是本课的难点。为了突出重点,突破难点,教学的关键是尽量联系学生的生活实际,增加学生对毫米和分米的感性认识。根据教材特点和学生的年龄特征,我制定了以下三条教学目标:1、结合教学,向学生渗透知识来源于生活,又服务于生活的思想。同时培养学生学数学,用数学的兴趣。2、通过自主探索与合作交流,培养学生的观察能力、动手操作能力和解决实际问题的能力。
出示计算错误的学生算式,让学生进行判别。说说为什么错,错在哪里。之前学生基本掌握了加法的计算法则,在此基础上先让学生尝试计算。让学生运用知识迁移的方法,类推出两位数加两位数连续进位的计算方法。再采用讨论、比较等方式学习。这样充分发挥知识迁移的效力,又可体现学生学习的自主性。2、尝试练习解决三个班级一共捐款多少元?由于1班和2班共捐了96元已求出,所以只要计算96+58。这题先让学生独立完成后在小组中说说你是怎么算的,通过向别人表达计算的过程来达到进一步掌握连续进位加法的方法,又培养学生的口头表达能力。(三)巩固练习练习可以让学生巩固所学的知识,并对所学知识有进一步地提升,让学生学有所用。
(一) 激趣引入创设生活中的情景,目的是让学生感受数学的亲和力,激发学生对本节课知识学习的愿望。所以刚开课我就创设了这样的情景:在阳光明媚的三月,老师去了成都,一路上还录了象,你们想看看吗?在学生热情洋溢时,播放录象:(课件:汽车在告诉路上行使)看了录象让他们说说都看到了什么?当学生说到路牌时(课件:特写一个路牌200km)老师追问:在这个路牌上你又看到了什么?学生会发现两个新的字母km,接着让学生说说它表示的意思。如果学生能说出km表示千米,教师给予肯定,并引出课题,如果学生不能说出来,老师可以直接介绍:这是一个新的长度单位----千米。关于千米的知识你想了解些什么呢?让学生提出问题,然后教师揭示课题,今天我们就一起来认识千米,解决同学们关注的问题,并板书课题“千米的认识”。
长度测量是其它测量的基础,而且学生虽然接触过有关长度的测量,但技能还很不稳定,更是不规范。所以本内容强调教师指导作用,教师及时纠正学生的错误操作,并组织讨论错误测量引起的测量值偏差,测量结果的正误。教学定位应力求实验操作规范,观察认真细致,给学生以示范作用。5、建立一个人体尺度意义提问:如果我们手边没有刻度尺,又需要粗略地知道物体(如科学课本、课桌、教室……)的长度时,你有什么办法吗?(提问,给出了建立人体尺度的目的)(可能回答:用人体的指距、跨步距离……进行粗测)学生分组实验:利用人体的指距、跨步距离……粗测课桌的长和宽、教室的长和宽,并与用刻度尺测量的结果进行对照。以上做法相当于学生在自己身上设置了一把尺子,这把尺子与身体的其他“尺子”联系在一起,还可以做出其他许多的估计,有利于因地制宜培养学生的估测能力。
3.解决问题验证发现问题后,师生必然要寻找解决问题的方法。从而通过生生交流、师生交流,训练了学生的逻辑思维能力,找到了解决问题的方案,最后较为圆满地解决了“为什么老师赢的次数多”的问题。4.结合实际,应用规律:发现规律后,引导学生去解开生活中的小秘密,通过对摸奖活动发表自己的看法和争当小小设计师,把课堂延伸到了课外。以生活中的实际问题进一步激发学生的思维,渗透思想教育和培养学生应用数学的意识,体会可能性的大小与事件发生的不确定性之间的关系,开放性的习题设计,给学生提供了解决实际问题的机会,增强学生学习数学的信心。5.全课小结,畅谈感受。说说这节课有什么收获?让学生畅谈感受、收获,不仅可以培养他们的概括能力和语言表达能力,更重要的是同学之间可以互相学习,取长补短,互相评价鼓励。
(四)联系实际,应用周长在学生有了感性认识的基础上进一步理解周长的意义,并学会用周长的知识去解决一些简单的实际问题。播放光盘中的动画:有两只小蜗牛赛跑,它们都觉得自己跑的路线长,你有什么办法帮助他们解决这个问题吗?让学生想办法帮小蜗牛它们解决这个问题。光盘资源中的动画激发学生的学习兴趣,培养学生运用所知识解决问题的能力。这个环节的设计主要目的是让学生感受数学与生活的联系,增强学习的趣味性,感受数学在现实世界中有着广泛的应用。(五)总结全课同学们,这节课,我们认识了什么?你有什么收获吗?(我们从认识边线进而认识了周长,从探索不同形状的物体周长的测量方法,到尝试去计算各种图形的周长。在我们生活中,每个物体的表面都有它们各自的周长。周长的知识在生活中的应用还是很广泛的。
1、基础题:妈妈煎鱼,一次锅里最多能煎3条鱼,每煎一面要4分钟,怎样才能最快煎鱼完9条鱼?(学生独立练习,指明一个学生板书,并说说解答的思路过程)2、提高题:在上题的基础上,把问题改成:怎样才能最快煎鱼完8条鱼?(学生发现总共16个面,16除以3等于5次还余1个面,那怎么办呢?可让学生讨论交流,余下的一个面还要煎一次,也就是5+1=6次,再用6乘4得到最快要24分钟。)当次数出现有余数时,我们采用进一法再加一次,公式还是成立。3、拓展题:那么怎样才能最快煎好15条?47条?100条鱼呢?[设计意图]经练习中巩固和验证了总结的规律,在练习的不同层次上满足了不同学生的学习需求,同时让学生感受到了数学与生活的密切联系,提高了学生解决实际问题的能力。四、归纳总结,提出希望。今天的这节课同学们有什么收获啊?生活中处处都有数学,只要同学们有一双善于观察和发现的眼睛,积极动脑思考,你一定会有收获。
第三个规律,商不变的规律。这是本课的重点内容。有了两次的探究经验,这一规律的学习与理解,可以完全放手让学生自主进行。猜想如果商不变,被除数、除数会发生什么变化呢?学生根据已有的经验,可能会有不同猜想,我要求学生带着问题通过计算、观察、比较、主动探讨总结出:被除数和除数同时扩大(或缩小)相同的倍数(0除外)商不变。利用合作学习,通过动脑动口动手,既提高学生解决问题的学习能力,又培养了合作学习的意识和习惯。给学生提供展示研究成果的机会,体验成功。需要教师提醒的是“有没有被除数和除数同时乘或除以不相同的数,商也不变的?”学生举反例加以说明并指出“相同的倍数不包括0”。设计这个环节,也有意让学生去验证商不变性质。学生在表述时,对于逻辑的严密性和语言的完整性需要老师及时指导,在突出重点的同时培养学生的语言表达能力。整个环节在验证的基础上,步步深化商的变化规律,为学生应用新知做好铺垫。
1.平行四边形和梯形都是四边形。师:要想研究它们,先来观察一下,这两种图形有什么共同的特点?学生说明,教师板书:四边形(于板贴平行四边形后),四边形(于板贴梯形后)。2.平行四边形和梯形都有对边平行。师:还有什么共同点?学生指黑板图形说明平行四边形和梯形中平行的对边。师:这是我们通过观察出来的,真的是这样吗?师:纸上(见上图)就有一个平行四边形和一个梯形.验证一下它们的对边平行吗?拿出你的工具开始吧!(学生操作,指生实物投影就图说明。)师:通过验证,说明了什么呢?有同样的发现吗?3.形成概念。(1)平行四边形。师:刚才我们验证了一个平行四边形和一个梯形,那么其它的平行四边形或梯形是不是也这样呢?这有3个平行四边形。课件呈现:3个平行四边形师:第一个我们刚才验证过了,用电脑再来验证其他两个。
一、创造性地使用教材。上课前,我就布置了学生收集相关的“数”的产生的资料,初步感知“数”的产生历史及变化过程;上课后,我将数位的产生融入“数的产生”这样大的背景中,使学生感受数学王国的博大与神奇。二、把学习的主动权利教给学生,放手让学生去探索、去发现,给予学生思维的空间。如:我在教学“探索十进制计数法”一节时,给学生提供一张不完整的数位顺序表,让学生填写完整并说出依据。学生通过自己动脑思考、动手填写,就会发现“相邻两计数单位间的进率都是十”,既而明白:相邻两单位进率是十的计数法就是十进制计数法,课堂效果十分明显。三、困惑与反思:本节课对十进制计数法教学法的设计虽然取得了较明显的效果,但对于“数位”、“位数”、“计数单位”这些概念该不该讲?怎样讲才能让学生理解得更透彻,我感到困惑。