(2)蒙古族音乐的最典型的代表就是马头琴,代表曲目《马头琴》。维吾尔古典乐曲《十二木卡姆八十二部大曲》,是维吾尔民间音乐向套曲形式发展的重大成果,也是一部维吾尔民间音乐和舞蹈完美结合的艺术瑰宝,它包括古典叙咏歌曲、民间叙事组歌、舞蹈乐曲和器乐曲340多首,长期流传于南北疆各地。维吾尔族的古老乐器是弹布尔,主要曲目为《乌扎勒》。哈萨克族著名的《玛依拉)Ⅺ我的花儿》已成为国内乃至国际声乐坛上经常演唱的曲目。2.多民族文化对中华文化的意义此知识点教材从四个方面分析:第一,分析民族文化与中华文化关系;第二,分析了民族文化的地位;第兰,分析r民族文化之问的关系;第四,总结其意义。(1)中华民族是多民族的共同体,中华文化呈现多种民族文化的丰富色彩。中华各民族的文化,既有中华文化的共性,义有各自的民族特性。(2)地位。它们都足中华文化的瑰宝,都是中华民族的骄傲。(3)各民族文化的关系。各儿弟民族文化相互交融、相互促进,共同创造中华文化。
四、学情分析学生对博大精深的中华文化,其认知起点绝大多数都是由历史书本所得,有一定的学习兴趣。但对于学生来说,对中华文化的了解只是只鳞片甲,要学会分析传统文化,辨析中华文化的区域特征,理解博大精深的中华文化是中华民族延续和发展的重要标识这一课标的要求还有难度。再则学生从感性到理性的思维的跳跃也有一定障碍。同时学生在收集与筛选社会信息、辨识社会现象、合作、表达能力等方面也有待加强。五、教学方法问题研讨教学法、自主探究学习法六、课前准备1、学生准备:预习教材内容,完成预习目标2、教师准备:多媒体课件制作,课前预习学案,课内探究学案。3、教学环境的设计和布置:多媒体教室分配好学习小组七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实学生的预习情况并了解学生的疑惑,使教学具有针对性。(二)情境导入、展示目标从历史的角度看,中华文化源远流长;在内容上看,中华文化博大精深。这节 课学习第二框。
讨论:二氧化碳在大气的受热过程中起到了什么作用?(吸收太阳辐射中的红外线辐射和地面辐射,保温作用)大气中的二氧化碳浓度增大对气温有什么影响?(全球气候变暖)阅读:我们知道了太阳辐射中的可见光和红外 光能量的吸收和转化,那么紫外区的能量到哪儿去了?请同学们查阅资料,自主探讨。小结:大气的受热过 程就是太阳晒热了地面,地面烘热了大气。太阳辐射是大气的根本热源,地面辐射是大气的直接热源。这就是为什么海拔越高,气温越低的原因,难怪高处不胜寒!转承:大气的直接热源是地面,不同性质的地面温度是不同的,同纬度,海洋和陆地就有温差。提问:请学生说说白天和晚上在海边的不同感受。由白天和晚上的风向不同切入实验P32活动。讨论:通过烟雾的飘动,我们得出了什么规律?冷热不均引起了热力环流板书: 二、热力环流板图与分析:结合试验,学生分析热力环流 的产生
【知能训练】一、选择题(第1-5题为单项选择题,第6-7题为双项选择题)东北温带湿润、半湿润地区内的三江平原有“北大荒”之称,如今“北大荒”已被人们称为“北大仓”。据此完成1-2题:1、下列关于三江平原的叙述,正确的是()A.地处中温带湿润地区B.因粮食单位面积产量高而成为全国性的商品粮基地之一C.土壤因富含矿物质而形成肥沃的黑土D.夏季高温且雨热同期,利于冬小麦、玉米种植2、目前,三江平原还有大片沼泽荒地,但2000年国务院下令停止围垦,其主要原因是()A.我国已加入WTO,可以从国际市场大量廉价进口粮食B.保护“湿地”有利于改善生态环境C.开展多种经营,发展菱藕等水生植物生产D.煤、石油等矿产资源丰富,今后转向矿产资源开发利用3、我国西部地区的地理差异有()A.甘新多沙漠戈壁,青藏多大河湖泊B.陕甘宁地势低平,云贵川地形崎岖
四、坚持不懈奋斗路虽远,行则将至;事虽难,做则必成。高考竞争激烈,备考过程艰辛,需要同学们坚持不懈奋斗,全力以赴战胜备考的枯燥、困难、压力、挫折和疲倦!希望同学们把握好每一天的学习,深耕细作,重基础、重能力、重教材、重错题。认真上好每一节课,完成好每一次作业,破解好每一个问题,落实好每一天自主补短的学习任务,努力争取对各学科的学习达到“点点清、节节清、周周清”的目标。希望同学们重视每一次半月考试和重大考试,利用考试实战训练机会,巩固基础知识,提升学科能力,暴露并解决学习问题,训练应考心态,探索应考策略,提高应考能力。希望同学们珍惜宝贵时间,讲究学习和应考方法,真抓实干,苦干巧干,孜孜不倦,久久为功,不懈奋斗。
三、精准施策,科学部署夏训工作要想解决好执勤训练工作中存在的问题,我们就必须把“能打仗、打胜仗”的练兵鲜明导向立起来,建立长效机制,坚持治标兼治本,做到“统筹谋划、科学部署,科学推进、有条不紊,全力保障、全面提升”。1、以目标定向。建立夏训工作目标清单,清晰的时间表、制定保障机制三项工作。这三项工作要明确工作做什么、怎么做、如何保障,达到什么成效。2、建章立制。坚决纠正坐而论道,完善考评机制,解决干与不干、干多干少、干好干坏一个样的问题,使能带头带好头的干部受到褒奖和鼓励,使不干事、庸懒散、无责任心的干部受到鞭策和惩戒。3、科学组训。优化练兵方法、细化练兵方案、强化练兵研讨,明确“练什么、怎么练”的问题,助力履职尽责。4、多重激励。要从政治上、精神上、经济上建立健全奖惩激励机制,提升练兵热情,着力营造“你追我赶”的练兵氛围。5、服务保障。要着力解决保障明显不足的问题。
(二)紧盯人员密集场所,坚决遏制火灾易发态势。深刻汲取北京丰台长峰医院、浙江金华企业厂房火灾事故教训,坚持“哪类场所火灾多发就整治哪类场所、什么问题突出就整治什么问题”。继续做好火灾防控工作,以防范火灾、爆炸和防止踩踏为重点,紧盯水利办公区域、职工食堂、施工区域、集体宿舍、水利工程管理用房等场所,集中排查整治违规电气焊、违规动火、违规使用易燃可燃材料装修装饰、违章动火作业、锁闭安全出口、占用堵塞消防通道、消防设施损坏缺失等方面存在的重大隐患。(三)做好安全度汛工作,全面整治各类安全隐患。加强地质灾害防治,受到山体滑坡、垮塌和泥石流威胁的施工工地、生产厂房和居民区,重点加强监测监控,采取针对性防范措施。强化建设施工项目安全检查,遇雷雨、大风等极端天气时,按规定立即停止室外高空作业,落实塔吊等大型起重机械抗风防滑措施。切实做好汛期安全隐患排查治理工作,确保汛期安全生产形势稳定。
疫情防控是底线,守住阵地是使命。学校作为人员密集场所,是疫情防控的重点区域,涉及面广、工作量大,面临的任务更加艰巨、挑战更加严峻,做好复学准备工作,特别是复学前后的疫情防控工作,是一项复杂的系统工程。随着假期即将结束,社会关注点将迅速转向返校、复学等教育领域重点工作。防止疫情向学校扩散、守护师生安康、维护校园稳定,是摆在教育系统面前的一项重大政治任务。
所以今天,从疫情说起。大学四年,疫情三年,很多学弟学妹感到委屈、抑郁。青春一去不复返,谁来还给我?我想说,基本上没人会还给我们青春,也没人能还,还得自己找,而且就是在当下的每一天里找。 不瞒大家说,今年有几天,我也有抑郁情绪,过度焦虑,对自己的未来失去信心,对什么事都提不起兴趣,工作效率明显降低。有一天,我忽然拍自己大腿,就像大学时上课打瞌睡,使劲掐自己一把,醒过来,开始反问自己:当大家都在居家办公时,有人工作业绩不减反增?有人可以抓住时间开启一项新研究?有人能锻炼出身体马甲线?有人能静心读书提升自己?有人增进了亲子感情?而我,为什么不能?
课程名称数学课题名称8.2 直线的方程课时2授课日期2016.3任课教师刘娜目标群体14级五高班教学环境教室学习目标知识目标: (1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 职业通用能力目标: 正确分析问题的能力 制造业通用能力目标: 正确分析问题的能力学习重点直线的斜率公式的应用.学习难点直线的斜率概念和公式的理解.教法、学法讲授、分析、讨论、引导、提问教学媒体黑板、粉笔
课程分析中专数学课程教学是专业建设与专业课程体系改革的一部分,应与专业课教学融为一体,立足于为专业课服务,解决实际生活中常见问题,结合中专学生的实际,强调数学的应用性,以满足学生在今后的工作岗位上的实际应用为主,这也体现了新课标中突出应用性的理念。分段函数的实际应用在本课程中的地位:(1) 函数是中专数学学习的重点和难点,函数的思想贯穿于整个中专数学之中,分段函数在科技和生活的各个领域有着十分广泛的应用。(2) 本节所探讨学习分段函数在生活生产中的实际问题上应用,培养学生分析与解决问题的能力,养成正确的数学化理性思维的同时,形成一种意识,即数学“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等职业教育课程改革国家规划教材,依照13级教学计划,函数的实际应用举例内容安排在第三章函数的最后一部分讲解。本节内容是在学生熟知函数的概念,表示方法和对函数性质有一定了解的基础上研究分段函数,同时深化学生对函数概念的理解和认识,也为接下来学习指数函数和对数函数作了良好铺垫。根据13级学生实际情况,由生活生产中的实际问题入手,求得分段函数此部分知识以学生生活常识为背景,可以引导学生分析得出。
课题序号 授课班级 授课课时2授课形式新课授课章节 名称§9-1 平面基本性质使用教具多媒体课件教学目的1.了解平面的定义、表示法及特点,会用符号表示点、线、面之间的关系—基础模块 2.了解平面的基本性质和推论,会应用定理和推论解释生活中的一些现象—基础模块 3.会用斜二测画法画立体图形的直观图—基础模块 4.培养学生的空间想象能力教学重点用适当的符号表示点、线、面之间的关系;会用斜二测画法画立体图形的直观图教学难点从平面几何向立体几何的过渡,培养学生的空间想象能力.更新补充 删节内容 课外作业 教学后记能动手画,动脑想,但立体几何的语言及想象能力差
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.1节《对数函数的概念》。对数函数是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。学习中让学生体会在类比推理,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、理解对数函数的定义,会求对数函数的定义域;2、了解对数函数与指数函数之间的联系,培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。3、在学习对数函数过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,感受数学、理解数学、探索数学,提高学习数学的兴趣。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。