说教材内容:本节课是小学数学第五册第六单元多位数乘一位数中的内容,笔算乘法是本单元的教学重点。主要解决的问题如下:笔算过程中从哪一位乘起、怎么进位和竖式的书写格式。例2主要是解决两位数乘一位数、个位积满十需向十位进位的问题。由于学生是初次学习进位,例2的数字较小,主要是方便学生理解进位的道理。】教学内容:多位数乘一位数的乘法(进位)(书76页例2)教学目标:1、初步掌握因数是一位数的进位乘法的算法。2、正确、熟练地进行计算。【说教学目标:这节课是学会了笔算竖式以及算理的基础上进行教学的,教学目标主要有:理解进位的道理,掌握多位数乘一位数的计算方法;能正确、熟练的计算。】教学重点:正确计算两、三位数乘一位数(进位)。教学过程:一、揭示课题:多位数乘一位数的笔算乘法(进位)
3、做练习十六第4题我用创设情境导入,接着让学生用竖式计算,并提问2是哪来的。创设情境,激发学生兴趣,使他们积极思考,主动参与,活跃课堂气氛,轻轻轻松做数学。4、判断题。让学生判断是对还是错,并说错在哪并改正。通过判断,加深学生对用竖式乘法的认识。5、做拼图题。全班合作把题完成。这道题我设计题的下面有天安门前美丽的景色。和前面文昌重建家圆相呼应。构成一个完整现实情境。通过全班合作培养学生的合作意识。四、课堂小结第四环节:总结归纳让学生说说今天学到了什么?在学生总结的同时,教师用规范的语言复述笔算乘法的计算的方法1、相同数位要对齐,2、从个位乘起,3、乘到哪一位上积就写在那一位上。使学生对所学知识有一个清晰的结构。课堂是富有生命的,说课设计毕竟不是现场上课,所以面对课堂上的生成我们还需要作出灵活的应对,我想这才是我们最大的挑战。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
二是强化学生参与,当好“拉风”服务代言人。组建“小红萌”等品牌志愿服务团队,紧密围绕学生特点设计服务项目,以世界环境日、学习雷锋日系列节日为契机,引导各校少先队员走出校门、进村入户参与环境卫生、垃圾分类等社会实践,在身体力行中增强学生的主体意识和责任观念。2022年以来,组织中小学生深入村居(社区)、农村文化礼堂等地开展各类活动2000余次,参与志愿者达到3万余人次。三是强化社会协同,当好“拉风”潮流主人翁。联合市环保局、市少年宫等单位、社会组织共同开展实地参观学习活动,发挥好环保能源公司、垃圾焚烧发电厂、科普馆等资源场所作用,邀请现场技术人员答疑解惑,通过“大手牵小手”的形式传授垃圾分类、回收、处理专业知识,家校政社多主体、多维度同频共振,营造起“人人有责、人人参与”的浓厚氛围。目前与20余家企业、场馆形成定点联系,已举办100余场次体验活动。
1.目前重庆地区普遍采用的一种劳务派遣模式是:由用人单位支付管理费,被派遣员工的工资、社保等,由用人单位转账至劳务公司代为办理。劳动合同由劳务公司与被派遣员工订立、终止、解除,劳动纠纷等也由劳务公司进行处理。但出现工伤时,本着谁受益谁承担的原则,用人单位仍要承担赔偿责任。而工资、社保、风险等完全由劳务公司承担的模式,目前大型劳务公司均不愿采用此种模式。
第二条、制订本制度的指导思想:以生产经营为中心,坚持把加强思想政治工作与必要的行政手段、经济手段结合起来,培养和造就一支有理想、有道德、有素质、有纪律的员工队伍,充分发挥其积极性和创造性,保证企业和员工奋斗目标的实现。第三条、本制度适用于本公司全体员工。
甲方根据 横琴应来科创广场营销中心装修工程 工程施工的需要,决定将部分分项工程委托给乙方施工,为明确双方责任,确保本工程保质保期完成,达到预期目标,双方根据有关法规及条例,结合本工程的具体情况,经双方协商,签订本合同,以资共同遵守。一、工程名称及地点1.1工程名称: 1.2工程地点: 二、工期:施工天数共 日历天2.1开工日期: 年 月 日2.2竣工日期: 年 月 日其中节点进度要求为:根据项目部提供的装修节点进度计划实施(详见施工进度计划表) 三、承包方式、范围、内容3.1承包方式:清包工(包工不包料)3.2承包范围:木工装修 3.3承包内容:天花吊顶、软包、金属板安装、玻璃饰面、不锈钢饰面、墙体木作饰面及木作基层等木作项目;材料二次搬运;施工垃圾清理;施工成品保护;辅助材料及小型用器具、设备等;质量;工期;安全文明等。 四、质量、进度、安全、文明施工目标要求4.1质量要求:符合设计施工图要求,达到国家现行施工质量规范标准。优质验收通过标准(具体见项目部技术交底)。 4.2进度要求: 达到项目部提供节点进度计划时间。 4.3安全要求: 严格按照安全施工操作规程施工,按照甲方的安全管理要求,不发生安全事故。 4.4文明施工要求:执行甲方各项管理制度。 五、合同造价、承包单价、结算程序、付款方式5.1合同造价: / 元(暂定),最终造价按实际工程量结算。5.2承包单价: 5.2.1清包单价:完成承包范围内的工作内容并达到合同约定的各项要求标准时,综合单价为: 5.2.2如发生点工,点工单价为: 5.2.3清包综合单价组成:①.包括完成承包范围内的工作内容及分项定额中的全部工作内容用工;②.原材料、周转材料装卸、场内运输、堆码、回库;③.作业区清理、落手清用工;④.施工范围内文明施工及安全防护措施用工;⑤.停水、停电待工待料用工;⑥.辅助材料费及小型机械工具费。
随着音乐自由地表现包粽子的过程。指导语:这段音乐表现了包粽子的过程,怎么包呢?我们听着音乐试着做一做。
教学说明: 在课堂设计中,学生通过聆听导入、名曲赏析、活动体验等多种环节,熟悉优美的民族音乐,从中领略民族音乐中的人文精神,文化特征,同时以节日音乐中的欢乐情绪感染学生,使学生具有热爱生活,热爱民族传统文化的良好品质。教学内容: 1、聆听歌曲《好日子》,通过喜庆的情景导入。 2、《春节序曲》作品赏析,了解并掌握音乐作品的情绪、结构特点等。 3、学生通过体验拓展,以不同的形式感受节日的喜庆气氛。教学目标: 1、认知目标:在对比、欣赏、聆听和实践体验中了解乐曲的基本结构,认识作曲家李焕之。 2、能力目标:通过交流、体验活动、表演、师生评价等方式来完成对音乐作品的理解,激活学生的欣赏热情。 3、情感、态度、价值感目标:在欣赏《春节序曲》中感受音乐作品欢乐、热烈的情绪,使学生产生学习音乐的兴趣,进而培养学生具有乐观向上、热爱生活、热爱民族传统文化的健康心态。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。