2、从正面初步感受成正比例量的特征发给学生学习卡,呈现给学生两组成正比例的量,目的是让学生从正面发现正比例的特征,通过观察、自主探索与合作交流等方式初步建构正比例的意义并做抽象归纳。3、在练习中继续感受成正比例量的特征练习分两个层次,首先呈现给学生简单的成正比例和不成正比例的三组量进行比较,然后呈现一些易错的数量关系进行判断,目的是让学生在比较中,逐步剥离无关因素,突出正比例的本质特征,并形成正确的正比例的判定思路。(三)说学法在本节课中,我着重引导学生,在独立思考的基础上,学会小组合作交流。具体表现在学会思考,学会观察,学会表达,学会思考。使学生有足够的时间和空间经历观察、猜测、推理等活动过程,并对学生进行激励性的评价,让学生乐于说,善于说。
一、说教材“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。正、反比例关系是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以应用它解决一些简单的正、反比例方面的实际问题。二、说教学目标1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.2.通过观察、比较、归纳,提高学生综合概括推理的能力.三、说教学重点理解正反比例的意义,掌握正反比例的变化的规律.四、说教学难点理解正反比例的意义,掌握正反比例的变化的规律.五、说学情在教学了正比例知识后,大部分学生都明白了如何判断两个量是不是正比例,在做题时,学生出错的可能性不大,主要在于语言表达的完整性和科学性上。可是一旦教授了反比例的知识之后,学生开始混淆两者了!不知道是把两个量相“乘”还是相“除”!这是由于学生对于“正”和 “反”的理解不够到位。
一、说教材:我说课的内容为六年级下册的《比例尺》。这节课是在学生学完“比例的意义和基本性质”、“正、反比例的意义”后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也很有现实意义。 教学目标1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。重点:理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。难点:从不同的角度理解比例尺的意义二、说学生: 六年级的下学期的学生,对于各种图形有着丰富的生活经验,所以,讲解有关比例尺的知识,学生有感性认识,同时也会饶有兴趣的。
教学新课1.教学例2。出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。2.教学例3。出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。3.教学“试一试”。提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?巩固练习1.做“练一练”。指名四人板演。其余学生分两组,每组两道题,做在练习本上。
师:非常正确。现在我们知道了表示方法,但是我们该怎么读呢?也就是说我们现在知道了怎么用数学符号去表示,或者说是会书写了。但是我们要说给别人听该怎么说呢?也就是该怎么读它呢?(正号!)正确。这两个符号在我们数学的术语里面又有了另外一个称呼,就是“+”在这里读着“正号”,“-”在这里读着“负号”。这个读法是数学里面规定的,是我们日常用语中的习惯读法。这里的+5,+6而不是我们所说的加上5,加上6,加是一个运算过程,而正号只是一个符号,它可以和数字组合在一起作为是整体的,是一个整体的数字,是不含运算的。同理,这里的-5,-6它也不是减去5,、减去6,而是一个-5、-6的数字。为了和我们的加号和减号相区分,所以我们就给了它另外一种读法。
1、教学内容本节课是人教版小学数学四年级下册第四单元《小数的意义和性质》第一课时《小数的意义》的教学内容。小数的意义是一节概念教学课,这是在学习了“分数的初步认识”和“小数的初步认识”的基础上学习的。掌握小数的意义,是这单元教学的重点,直接关系到小数的性质、单名数和复名数相互改写等相关知识。 2、教材的重点和难点小数的初步认识是小学数学概念中较抽象,难理解的内容。一位小数是十分之几的分数的另一种表示形式。学生虽然对分数已有了初步的认识,也学过长度单位、货币单位间的进率,但理解小数的含义还是有一定的困难的。同时学生在以后的学习中,小数方面出现的很多问题是属于小数概念不清。因此,理解小数的含义(一位小数表示十分之几)既是本课时的重点、又是难点。在教学中要注意抓住分数与小数的含义的关键。
(三)实践活动(运用)接着,我设计了实践活动,让学生走出教室,在校园找到不同型号的自行车有四辆我把学生分成四组,并且分工合作,每组5个人,有3 个人负责采集数据,有两个人负责计算出结果。教师还要在旁边指导测量的方法,让学生学会收集数据。培养学生学会用数学的眼光观察现实生活,从中发现问题,提出问题,解决问题,体会数学的广泛应用与实际价值,获得良好的情感体验。数学模型方法的教学,还要培养学生运用模型解决现实问题的能力。因此,在学生理解模型之后,老师提供各种各样的现实问题,引导学生运用所得的数学模型去解决。在这个过程中,教师的指导非常重要,教师要指导学生把现实问题的元素与数学模型中的元素建立丐联系,还要指导学生如何运用已经建构的数学模型来分析和处理问题。学生经历了这样的学习过程,他们才会感受到数学模型的力量,才会感受到数学学习的乐趣。
这节课的教学内容是在学生学习掌握了圆和圆柱的相关知识的基础上而安排的。认识圆锥,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面的学习做好铺垫。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排在圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。二、说学情我所教学班级的学生是山区的孩子,经过前面的学习他们的主观性和能动性已经有较大的提高,能够有意识地主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高,也有一定的动手操作能力。但抽象逻辑思维在很大程度上仍然靠感性经验支持,加上他们生活在山区,对新生事物的见识面相对较窄,所以在教学时适宜恰当地运用远程教育资源,既能创设教学情境,又能将抽象的知识直观化,更加直观地体验感知圆锥的特征。
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的,圆柱的体积是圆锥的3倍。第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= Sh。第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
(二)师生互动,验证猜想活动二:学生自由探索,圆柱体积计算方法以小组为单位设计出一种自己学过的知识计算圆柱体积的方法,通过合作,学生想到的办法可能有:①把橡皮泥捏成圆柱体,再捏成长方体,量出长方体的长、宽、高。算出长方体的体积,也就是圆柱的体积。②把圆柱形的杯子装满沙子,铺平,然后把沙子倒入较大的长方体的盒子中,量出长方体盒子的长、宽及沙子的高,算出沙子的体积,也就是圆柱的体积。如果杯子的厚度忽略不计的话。杯子的容积就是杯子的体积。③把一个圆柱体放到装有(正)长方体容器中,水会上升,上升的水的体积就是圆柱的体积。(这一活动的设计,是通过观察力求让学生体验到我们在计算圆柱的体积时都是把圆柱的体积转化为其他形体的体积来进行计算的。由此,也就可以验证学生的猜想是否准确,但是为了不影响学生的求知欲,我设计了这样一个问题:你能用这些方法来计算我们的学校门口这根圆柱形柱子的体积吗?
请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2
(2)请你思考:师:这样就需要设计一张其他面值的邮票,如果最高的资费是6元,那么用3张邮票来支付时,面值对大的邮票是几元?可增加什么面值的邮票?(学生分组讨论设计思考)生:6元除以3元就是2元,可增加的邮票面值可为2.0元,2.4元或4.0元。(3)小结:虽然满足条件的邮票组合很多,但邮政部门在发行邮票时,还要从经济、合理等角度考虑。【设计意图:大胆放手,让学生参与数学活动。让学生成为课堂的主体,让他们在动手、动脑、动口的过程中学到知识和思维的方法,知识的获得和学习方法的形成都是在学生“做”的过程中形成的。】四、巩固深化:1、如果小明的爸爸要给小明回一封不足20g的信,他该贴多少钱的邮票?2、如果小明的好朋友要寄一封39g的信,他该贴多少钱的邮票?五、课后实践:课后给你的亲戚或者好朋友寄封信。
四、教学过程1.创设情境 导入课题同学们:课前,我让大家在生活中寻找圆柱,你们找到了吗?谁愿意来展示一下。李老师也找到一些图片,我们一起来欣赏:(多媒体展示生活中的圆柱图片)生活中的圆柱可真多呀!为什么要把它们要设计成圆柱形呢?学生可能会说:因为圆柱没有棱角,很光滑,所以栏杆、柱子要设计成圆柱形;因为圆柱可以滚动,所以压路机、刷墙滚子设计成圆柱形……同学们,你们说得很好,圆柱有这么广泛的用途,今天让我们进一步从数学的角度来认识圆柱。(板书“圆柱的认识”)2.自主学习 初步认识接下来,我让学生结合自带的圆柱自学教材第10—11页上的内容。指导学生学会看书,从书本上获取知识是学习数学的重要方法。因此,在感性认识圆柱的基础上,我让学生通过自主阅读获取圆柱各部分的名称。 同学们:通过自学,你们都获取了哪些知识?请拿着手中的圆柱来说一说?
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。(6)引导学生观察:A、从0起往右依次是?从0起往左依次是?你发现什么规律?B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?(7)练习:做一做的第1、2题。(二)教学例4:1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
分别算出2008年比2007年各季度增产的百分数和合计数,再制成统计表.分析:根据题目要求,要算出各季度增产的百分数,我们只要根据2008年与2007年各个季度的原始数据,运用“求一个数是另一个数的百分之几”的方法就可以算出.算出了各个季度增产的百分数,根据题意制统计表时,既要按照季度分类,又要反映出年份的类别,所以在确定表头时可分为3部分:年份、台数、季度,年份又分为2007年产量、2008年产量、2008年比2007年增产的百分数.2、田力化肥厂今年第一季度生产情况如下:元月份计划生产1500吨,实际生产1620吨;二月计划生产1600吨,实际生产1680吨;三月份计划生产1640吨,实际生产1720吨,根据上面的数据,算出各月完成计划的百分数,并制成统计表.(1)制作含有百分数的统计表时,百分数这一栏一定要写清楚是谁占谁的百分之几,并按“求一个数是另一个数的百分之几”的解题方法正确算出对应百分数”
5、计算分析,感受水浪费的巨大师:刚才这位同学说的很有道理,如果我们每个人都不注意节约用水的话,一年浪费的水是巨大的,同学们计算一下,按每个人一年浪费一个水龙头的滴水量计算,全国13亿人一年将会浪费多少方水。生:我反对计算13亿人的浪费情况,因为我们国家很多地方还很穷,根本没有自来水。师:刚才这位同学说的也很有道理,那我们就计算整个深圳人浪费水的情况。据第五次人口普查显示,深圳人口已达800多万,我们就按800万人计算。(学生分组计算)师:谁来说一说你们组计算的情况?生1:我们组通过计算得出,深圳人按这样计算,一年大约浪费2.4亿立方米水。(其他组表示同意)师:谁来形容一下2.4亿立方米水有多少?生:(1)2.4亿立方米水会把我们大家都给淹死了……(2) 们深圳人一年大约需水10亿立方米左右,2.4亿方水占了我们一年用水量的25%了。
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
一、创设情境,猜想验证1.猜一猜,摸一摸。一盒粉笔若干支,5种不同的颜色。至少摸几支能保证:(1)2支同色的。(2)3支同色的。(3)4支同色的。2.想一想,摸一摸。请学生独立思考后,先在小组内交流自己的想法,再动手操作试一试,验证各自的猜想。在这个过程中,教师要加强巡视,要注意引导学生思考本题与前面所讲的抽屉原理有没有联系,如果有联系,有什么样的联系,应该把什么看成抽屉,要分放的东西是什么。二、观察比较,分析推理1.说一说,在比较中初步感知。2.想一想,在反思中学习推理。三、深入探究,沟通联系四、对比练习,感悟新知1.说一说。把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球?2.算一算。向东小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?五、总结评价六、布置作业
四、说教学策略和方法本课的设计与实施,是一段艰难的过程,同时,更是一段充满着创造与激情的过程。我把本课的教学大致分成了四个部分。一、亲历生活,交流发现祖国幅员辽阔,春秋季南北温差变化,如此难得的学习资源怎能不好好地利用呢?课前,我给学生布置了一个任务:请你对全国各地的气温进行一次调查。上课开始的5分钟,是学生对他们的调查进行交流的时间。在这个开放与灵动的5分钟里,既有“小小天气播报员”精彩地播报,更有孩子们围绕着调查数据展开的精彩对答,请看录像(录像)。正是基于这种对生活的亲身感受,学生自然地走进了负数。在对直观数据进行观察与分析的过程中,学生建立起对“负数”的感性认识。实践表明,教师为学生搭建一个交流的“舞台”,学生就能为教师呈现出一个开放的课堂、动态的课堂。
【设计意图:先让学生观察、猜想,然后自己想办法“证明”自己的猜想。这样设计,给学生自主思考的时间和空间。在独立思考的基础上,再小组合作,把动脑思考与动手操作有机结合,把独立思考与小组合作有机结合。有利于提高探索活动的实效性。】教师巡视,参与学生的操作和讨论,找出有代表性的几种“证明”方法。3.交流讨论师:差不多了吧?能解释为什么把4个苹果放入3个抽屉,会出现总有一个抽屉中至少放2个苹果这一现象了吗?【学情预设:】第一种:枚举法请学生观察不同的放法,能发现什么?引导学生发现:每一种摆放情况,都一定有一个抽屉中至少放2个苹果。也就是说不管怎么放,总有一个抽屉中至少放2个苹果。第二种:假设法。还有没有用不同的方法来验证把4个苹果放入3个抽屉,总有一个抽屉中至少放2个苹果这一现象吗?