三是补齐市政设施建设短板。按照“花小钱、办实事”的原则,开展“城市体检”,排查城市污水、排水井116个,更换污水井盖27个、排水井12个;排查城市路灯1470个,更换维修310个;对城区21座桥梁进行安全排查,整改安全隐患4处;维护主次干道46处计5.11公里,维修人行道青石板453平方,更换城区损坏破损的座椅55把,疏通雨水管道216米,整治“空中管线”55处。五、重长效强监管,城市安全管理实现新突破一是大力开展油烟污染治理。对城区79家机关企事业单位,127家餐饮企业及城区工地食堂开展油烟污染全面排查检测1次,下发整改通知25份。实施规范管理,定期开展执法检查,要求“三个灶台”及以上必须安装油烟净化器,并聘请专业清洗公司对油烟净化器定期进行清洗,建立清洗台账,做好台账式管理,目前城区油烟净化装置安装使用率95%以上,达标排放率90%以上。
二是狠抓城区亮化绿化提质。严格按照《*城区亮化提质工作实施方案》《*城区绿化提质工作实施方案》抓好城区重要节点的亮化绿化建设,发放《致全区商铺、企业、酒店一封信》310份,积极宣传引导临街、临河住房、商铺、酒店参与城区亮化绿化提质大行动中来,摸排、发动*至*、*、*沿线113家商铺酒店及43家临街机关单位开展亮化建设,点亮了城市夜空。三是补齐市政设施建设短板。按照“花小钱、办实事”的原则,开展“城市体检”,排查城市污水、排水井116个,更换污水井盖27个、排水井12个;排查城市路灯1470个,更换维修310个;对城区21座桥梁进行安全排查,整改安全隐患4处;维护主次干道46处计5.11公里,维修人行道青石板453平方,更换城区损坏破损的座椅55把,疏通雨水管道216米,整治“空中管线”55处。五、重长效强监管,城市安全管理实现新突破
二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。三是精准施策,做好新形势下就业创业工作。要运用动态的观念,准确掌握每个失业人员状况,根据个人的实际情况及需求,提供一对一就业援助服务;对有求职愿望的失业人员提供每月不少于*次的岗位推荐服务,对有学习培训意愿的失业人员,推荐参加各项技能培训;切实落实各项补贴,为符合办理条件的失业人员办理各项就业援助补贴;对辖区企业进行信息采集工作,积极开发就业岗位,多途径多渠道促进就业。四是多管齐下,做好政务服务工作。要把“群众办事是否方便”作为衡量改革成效的重要指标,做好“最后一公里”服务,持续推进“放管服”改革。
(三)严格消防监督管理大队严格“双随机一公开”监管执法流程,半年来,共检查单位442家,发现火灾隐患或违法行为676处,督促整改火灾隐患或违法行为577处,下发责令改正通知书612份,下发行政处罚决定书20份,下发临时查封决定书7份,责令“三停”单位9家,报请县政府挂牌重大火灾隐患单位1家,签发公众聚集场所投入使用营业前消防安全检查意见书17份,火灾防控工作取得了明显成效。(四)补齐基层消防监管短板推动全县31个乡镇街道办挂牌成立消防工作办公室,并明确消防专员,填补基层消防安全综合治理的“空白点”和“薄弱区”。深化网格消防监管,持续落实以奖代补政策,今年以来网格员入户排查隐患20944处,开展消防宣传教育52723次,形成了完善的基层火灾防控体系和网格隐患排查整改机制,打通基层监管最后一公里。(五)强化社会面宣传培训
如今的我们,沐浴着阳光,在明亮的教室里读书,在知识的殿堂中尽情遨游;如今的我们,生活在一个没有战争的和平世界中,孩子们,大人们脸上都展露会心的微笑;如今的我们,生活富裕,想买什么就买什么,零食、饮料样样不缺……大家可曾想过,如今的幸福生活,是如何得来的? 是战士们用自己的鲜血换来的!鲜血染红了五星红旗,染红了红领巾,染红了我们每一个人的心!战场上抛头颅,洒热血,勇往直前,将敌人全部消灭:黄继光用身体挡住敌人的子弹;狼牙山五壮士用生命换来了群众的安全;董存瑞舍身炸碉堡;刘胡兰面对刀架不屈服,未满14岁便光荣牺牲……革命先烈三天三夜也讲不完!
甲方自愿申请使用乙方网上银行服务,为明确双方的权利和义务,经双方协商,签订本协议。一、甲方申请使用乙方网上银行服务,必须拥有乙方的牡丹卡信用卡、贷记卡或灵通卡。二、乙方网上银行为甲方提供查询,转账、BtoC在线支付,外汇买卖,代缴学费、贷款等服务。以上服务仅限于甲方本人的注册卡和账户。三、甲方申请使用乙方网上银行服务,必须填写《中国工商银行网上银行业务个人客户注册申请表》并签名确认,同意遵守《中国工商银行网上银行章程》和《中国工商银行个人网上银行交易规则》。同时提供本人有效身份证件及相关的卡,经乙方查验无误后,方可开通使用。注册牡丹商务卡的,需提供单位授权书。甲方须在注册申请表上填明注册的卡号/账号。注册后下一工作日甲方可以使用网上银行服务。四、甲方在使用乙方网上银行服务时,应按照乙方的规定正确操作。因操作不当而造成的损失,乙方不承担任何责任。五、甲方必须妥善保管本人网上银行登录密码和支付密码,所有使用上述密码进行的操作均视为甲方本人所为。依据密码等电子信息办理的各类结算交易所发生的电子信息记录均为该项交易的有效凭证。六、甲方遗忘或泄露上述密码,必须持本人有效身份证件及相关的卡,到乙方营业网点填写"网上银行个人客户变更事项申请书",办理密码重置手续,办妥手续之前所产生的一切后果由甲方承担。
二、为了保证学生能够全员上课,上课点名查学生到课情况,上课中间会不定时点名提问,结束时还会再次查到课情况,尽管反复强调课堂纪律,但总有部分学生不能按时上课,还有1—2个学生甚至不上课。 三、课后会利用钉钉家校本给学生布置几个填空题或完成课堂笔记,巩固所学知识。为了保证作业能够按时完成,每天利用钉钉的家校本的提醒家长功能多次提醒家长督促孩子完成作业,但完成情况不尽如人意,就昨天的作业检查情况来看,118班40人,完成36人。116班36人,完成32人。
《上海市自费出国留学中介服务合同》(以下简称合同)是根据国家教育部、公安部、工商行政管理局联合签发的第5号令——《自费出国留学中介服务管理规定》等文件制定的示范文本,供自费出国留学中介服务机构(以下简称服务机构)为自费出国留学申请人(以下简称申请人)提供自费出国留学中介服务,签订合同时使用。申请人在签订合同前应仔细阅读以下内容:一、自费出国留学中介服务属于特许服务行业,从事该行业的服务机构必须具有国家教育部颁发的《自费出国留学中介服务资格认定书》,按规定缴存备用金,并经上海市工商行政管理局注册登记。二、服务机构必须依法经营、诚信经营,为申请人提供规范的自费出国留学中介服务。三、申请人必须符合中国公民自费出国留学的必备条件。四、申请人可要求把服务机构的与申请人申请项目相关的留学广告、宣传资料、院校招生简章、学费收费及退费规定材料作为合同的附件。五、申请人在签字前应仔细阅读合同,并应完全理解合同的全部条款。特别应对合同第五条——“退费规定”全面理解。一旦签约,双方将完全按所签合同履行各自的义务。六、服务机构特别提示申请人注意以下几点:
泰山正南面有三谷。中谷绕泰安城下,郦道元所谓环水也。余始循以入,道少半,越中岭,复循西谷,隧至其巅。古时登山,循东谷入,道有天门。东谷者,古谓之天门溪水, 余所不至也。今所经中岭及山巅,崖限当道者,世皆谓之天门云。道中迷雾冰滑,蹬几不可登。及既上,苍山负雪,明烛天南;望晚日照城郭,汶水、徂徕如画,而半山居雾若带然。
一、加强教学管理和教学研究,进一步深化课堂教学改革1、夯实课改,进取推进新课标实施进程。作为改革实验学校,教务处继续进取认真组织全体教师深入学习新课标理念,体会新课标精神,明确新课标要求,面向全体学生,改变学习方式。良好的教研氛围,提高了教育教学质量。2、继续加强教学管理,完善规章制度,强化教学的规范化、制度化、科学化。加强常规检查,本学期教务处随机抽查、集中检查教师的教案,并进行记录,对存在的问题进行个别反馈。对学科测验、作业批改实施掌控并深入到各年级、班级了解情景。全面了解教学情景,不定时检查教师课堂教学情景,注重教学质量的全过程监控。组织各教研组定期与不定期检查教学计划等。规范学生学习习惯,重点抓好读书、写字的正确姿势,经过开展写字比赛、作业检查等方式进行强化。
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
环境问题 是伴着人口问题、资源问题和发展问题产生。本质是发展问题 ,可持续发展。6分析可持续发展的概念、内涵和 原则?可持续发展的含义:可持续发展是这样的发展,它既满足当代人的需求,而又不损害后代人满足其需求的能力。可持续发展的内涵:生态持续发展 ,发展的基础;经济持续发展,发展条件;社会持续发展,发展目的。可持续发展的原则:公平性原则——代内、代际、人与物、国家与地区之间;持续性原则——经济活动保持在资源环境承载力之内;共同性原则— —地球是一个整体。【总结新课】可持续发 展的含义:可持续发展是这样的发展,它既满足当代人的需求,而又不损害后代人满足其需求的能力。可持续发展的内涵:生态持续发展,发展的基础;经济持续发展,发展条件;社会持续发展,发展目的。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。