1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数 的平方等于 ,即 ,那么这个正数 就叫做 的算术平方根,”的“正数 ”,即被开方数是正的,由平方的意义, 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
第一环节感受生活中的情境,导入新课通过若干图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?——§3.1确定位置。第二环节分类讨论,探索新知1.温故启新(1)温故:在数轴上,确定一个点的位置需要几个数据呢? 答:一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置。总结得出结论:在直线上, 确定一个点的位置一般需要一个数据.(2)启新:在平面内,又如何确定一个点的位置呢?请同学们根据生活中确定位置的实例,请谈谈自己的看法.2.举例探究Ⅰ. 探究1(1)在电影院内如何找到电影票上指定的位置?(2)在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?(3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示?(5,6)表示什么含义? (4) 在只有一层的电影院内,确定一个座位一般需要几个数据?结论:生活中常常用“排数”和“号数”来确定位置. Ⅱ. 学有所用(1) 你能用两个数据表示你现在所坐的位置吗?
2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618= 1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试 验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割 点 ;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.●板书设计
2、某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3、y是x的反比例函数,下表给出了x与y的一些值: (1)写出这个反比例函数的表达式;(2)根据表达式完成上表。教师巡视个别辅导,学生完毕教师给予评估肯定。II巩固练习:限时完成课本“随堂练习”1-2题。教师并给予指导。七、总结、提高。(结合板书小结)今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成 (k为常数,k≠0)同时要注意几点::①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应 的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
这篇《高中生国旗下讲话稿:感受读书的快乐》,是特地,希望对大家有所帮助!敬爱的老师,亲爱的同学:早上好,我是高一22班的王薇,今天我国旗下演讲的题目是:感受读书的快乐!书是人类进步的阶梯。有人说过,假如一次灾难把现在的城市乡村都毁灭了,那么,只要还留下一座图书馆,人类就不会灭亡,也不会倒退回茹毛饮血的时代。多读书,读好书,获取知识,修身养性,贡献社会,实现自我。这非常必要也非常及时。知识就是力量,在知识爆炸的时代,多读书,读好书早已成为每一个人的心愿。作为知识载体的书籍早已成了知识的代名词。科学家爱因斯坦,一生完成了一千多种科学发明,不酷爱读书是难以站在巨人的肩膀上取得如此大的科学成就的。我国科学家李四光、钱学森、钱三强,还有被称之为当代毕升的王选等,哪一个不是自己所从事领域中的饱学之士,读书学习在造福社会的同时,也是塑造自我,完善自我,提升自我,实现自我的重要途径。读书明理,读书识大体就是这个道理。
老师们、同学们:大家,早上好!今天我国旗下讲话的题目是:《写在高考、中考前》。很荣幸借这个机会,向刻苦学习、执着拼搏的全体同学,特别是临近高考、中考的毕业班同学们致以最诚挚、最亲切的问候!当我们还沉浸于春的喜悦时,初夏的芬芳与烂漫却已悄悄来临,时光真的太匆匆……高三初三的同学们,回首近三年来我们一起走过的仆仆风尘,我们是否无怨无悔?三年,在历史的长河中,只是一瞬,可是这三年对于你们这些在学习路上求索的人,它却是一个刻骨铭心的难忘历程。你们当中,有的曾是运动场上健儿,有的曾是学海中的骄子,有的曾是艺术节里的明星……这三年,记载着你们面对困惑时的坚韧、拥抱成功时的喜悦、铸就辉煌时的自豪。回首昨天,有太多的“家珍”可数;展望明天,我们重任在肩。6月7日——高考,6月16日——中考,时间屈指可数,剩下短短的在校时光弥足珍贵,它最容易被人忽视而又最容易令人后悔。苦读寒窗,即将决战中高考,亲爱的同学们,千万要谨记:十年磨一剑,剑出必破竹,切不可因一时的疏忽而功亏一篑,否则,那将是切肤之痛,终身之憾!
尊敬的各位老师,亲爱的同学们:早上好!三天前,在北京举行了盛大的纪念反法西斯抗战胜利70周年的阅兵式,大家也都亲自感受到了那气势恢宏、震撼人心的场景。从今天开始,大家要踏上训练场,体验一下当兵的生活!有同学说训练很苦,我却想告诉大家。今天,我们能在和平的年代进行军训,就是一种幸福。70年前的那场浩劫,中国军民死伤达3500万以上,9500万平民沦为难民,中国近多半的领土被日军的铁蹄蹂躏八年之久。很庆幸,我们没有生活在那个时代,而是生活在现在这样一个和平、繁盛的时期,我们有什么理由去抱怨,有什么借口挥霍现在的日子。我们所要做的就是珍惜现在,感恩那些为我们创造了这个时代的所有人。早晨,大家睁开惺忪睡眼,沐浴着晨光踏上训练场,你要感恩身边没有炮火,没有枪声,一切都是那样安静与祥和。当你挺直腰杆,聆听着教官讲解动作要点,你应该感恩没有奔波,没有衣食之忧,一切都是如此和谐与静谧。
1、树立一种意识:以生为本即以学生为主体。 2、抓住两条主线:抓学生的养成教育,抓班级常规管理。 3、突出三个重点:通过课堂教育熏陶学生良好的品德。通过常规管理促成学生行为习惯养成教育,通过丰富的活动培养学生多种能力。
【教学目标】知识与技能目标:掌握对数函数的图像及性质;过程与方法目标:通过图像特征的观察,理解对数函数的性质,并从中体会从具体到一般及数形结合的方法;情感态度与价值观目标:在教学活动中培养学生的学习兴趣,感受数学知识的应用价值,体验知识之间的内在逻辑之美。【教学重点】对数函数的图像及性质。【教学难点】对数函数性质与应用。
二、对数函数的概念1. 计算对数的值 N1248x 思路(引入对数的概念):让学生依次计算、、、、、、,体会每一个真数都能找到唯一一个对数与之对应,这就形成了一个函数,我们称这个函数为对数函数。
2、培养幼儿思考问题、解决问题的能力及快速应答能力。 3、引导幼儿了解一些自我保护的常识,知道不能轻信陌生人的话,不跟陌生人走。[活动准备] 1、排练情景表演:小红没上当。 2、录制有关轻信陌生人上当受骗的内容。如:自己在家时随便给陌生人开门,随便吃陌生人给的食物,在公共场所迷路了随便跟陌生人走等造成不良后果,选择适合幼儿看的有关打击拐卖儿童的记录片。[活动过程]一、请幼儿观看情景表演“小红没上当”,教师在主要部分给以提示。
2、能大胆想象,尝试在废旧纸筒上用多种材料进行制作,体验造型活动的乐趣。 活动准备: 1、有关印第安人的图片、视频。 2、收集各种废旧餐巾纸筒、保鲜膜纸筒、毛线、麻绳、彩纸、边角布料、剪刀、胶棒等。 活动过程: 一、预热阶段 1、老师用故事的形式引出神秘的印第安人,讲述他们特有的生活方式,引起幼儿兴趣。 2、播放印第安人生活和舞蹈的视频,初步了解印第安人原始的生活气息。 二、图形刺激 引导幼儿欣赏、感受印第安人脸部造型和装饰特点。 1、师:你看到的印第安人长得什么样子?他们是怎样打扮自己的? 你觉得什么地方最特别?
2、发展基本动作,提高肌肉的耐力和集体的协调性。 3、在活动中体验成功和合作活动的乐趣。活动准备: 音乐、录音机、老师自编的奥运模仿操,铁圈、拱形门各6个。 活动过程: 一、开始部分 幼儿面对老师四散站立,随音乐做奥运模仿操:跑步―打乒乓―掷标枪―射箭―游泳―划船―跳高等。 二、基本部分 1、幼儿尝试用身体的不同部位“搭山洞”。师:以前,我们玩过“钻山洞”的游戏,今天,我们来用自己的身体搭山洞,想一想、试一试,用身体能搭出怎样的山洞呢?幼儿自由探索,老师观察、指导,提醒幼儿注意安全。 2、组织幼儿讨论大人、双人搭山洞的方法,并选去锻炼价值、安全性较高的方法进行集体练习。
二、活动目的: 1.教育幼儿在日常生活中应怎样与人相处。 2.教育幼儿能选择一种处理问题的较好的方式方法。 3.学习初步简单的分析问题。 三、重点难点分析: 重点:教育幼儿在日常生活中应怎样与人相处。 难点:学习初步简单的分析问题,教育幼儿选择一种处理问题的较好的方式方法。 四、活动准备:看录像 五、活动过程: (一)导入 组织幼儿看一段录像。 两个小朋友在玩一盒玩具,玩着玩着,他们同时发现了一件新玩具。为此吵了起来,后来又动手相互打对方。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。