尊敬的老师们,亲爱的同学们:大家早上好!刚刚度过了一个安全、充实愉快而有意义的暑假,我们又回到了美丽的校园。伴着秋天的气息,我们迎来了新的学期,开始了紧张而又快乐的校园生活。借今天的机会,给同学提几点要求和希望。首先要加强安全防范意识,上学的路上要严格遵守交通规则,严禁在上学、放学的路上玩耍、追逐。在校时,必须严格遵守学校的各项规章制度,严禁在教室里、走廊上、活动场所追逐打闹,严禁玩弄电器插座和开关、消防栓等有危险的设备,严禁把有危险的玩具带到学校玩耍,严禁玩危险的游戏。第二,要培养勤俭节约、爱护公物的良好品格,把学校的水电、用品看作自己家里的一样爱护,看到有浪费学校水电或破坏公物的现象,每一个人都有责任加以制止或批评。要培养良好的卫生习惯,严禁随地吐痰、随地乱扔纸屑、果壳、包装袋等垃圾。要培养相互关心、助人为乐等好品质,让学校真正成为我们学习的乐园,精神的家园。 第三,要勤奋学习,不断进步。读书,就得不负父母师长的殷切希望,对得起自己的每天,通过努力去实现那志存九天的壮怀理想。希望你们明确目标、增强信心、刻苦学习,科学安排时间,坚持不懈地努力拼搏。
同学们,人生就像一条奔腾不息的河流,有平静舒缓的静水深流,也有波涛汹涌的激流飞瀑,但无论如何这条生命之河都不会逆向流淌。大学作为其中的一段,亦是如此。面对这人生当中仅有一次的宝贵经历,任何一个人都没有理由不去珍视它。认识到这一点,我们就会更加明晰“我的人生”和“我的大学的责任。诗人歌德曾经说过:责任就是对自己要求去做的事情有一种爱。这就是说,做一个有责任的人近乎成了人的一种本能。因为爱我们的祖国,所以我们自然就有了“国家兴亡匹夫有责”的报国热情;因为爱我们的父母,所以我们自然就懂得了“谁言寸草心报得三春晖”的感恩之情;因为爱知识,所以我们从不缺少“路漫漫其修远兮,吾将上下而求索”的求知热情。责任,一个看似空泛的概念,实则充实而厚重。
欣赏完自己的表演后,接下来同学们的吉他独奏表演、歌曲合唱、相声表演更加让我感遭到了集体的魅力,多姿多彩的节目表演,展现了同学们多种不同的才艺,表现了当代大学生风姿多彩的才能,被气球和彩带装潢的教室正是由于地方不大,才更显示出了一家人的暖和。假如说第一次团日活动像一颗火炉暖和了交运3班这个大家庭,那末第二、第三次团日活动就是一股生命的气力把这个大家庭由出色一步步拥向辉煌。在集体参观伊利团体的第二次团日活动中通过了解伊利团体的历史沿革、生产范围还有当前其所面临的国际国内情势,让我感遭到中国企业的勃勃生机,特别是那叠放成品牛奶的铁架:真是一座牛奶大厦。
第一:不要吝啬对学生的爱。爱是溶化剂,爱是桥梁。要想让学生爱你,首先你应该付出你的爱。为了做到这点,我把关爱渗透到平时。我从不吝啬我的爱。比如:帮学生整理衣领,拍拍学生的头,学生生病时温柔的目光,关切的话语,递上的一杯热水。天气变了,我会及时提醒学生添加衣物,注意用火、用电安全。特别是周一第四节课和周六学生该回家时,我都不忘提醒学生下楼慢点,路上注意安全,会说:周一我会迎接同学们返校的。我是老师也是母亲,我的关爱发自心底,出自真诚。我在尽力做到:随风潜入夜,润无心无声。
第一,要把以"客户为中心"的理念贯穿于我们工作的始终。"基础牢固,稳如泰山;基础不牢,地动山摇"。风险的防范与控制,说到底是人的因素起着重要作用,客户创造市场,客户创造价值,客户是我们的效益之源,是我们的衣食父母,有了客户,我们的业务才有发展,员工的价值才能够体现。 如果每个岗位的员工都能严格要求、严格规范、严格标准、严格执行规章制度,业务操作中的风险就会得到有效的遏制。要在全体员工中大力倡导、深入宣传价值最大化、资本约束、全面风险管理、风险与收益平衡、内控优先等先进理念,让全体员工了解资产质量与经济增加值、与薪酬分配的关系,自觉转变观念,将自身工作作为第一道防线纳入到风险控制体系中,引导和带领全行员工形成规范操作,防范风险的良好氛围,真正把为前台、为基层、为客户服务当作提升风险与回报管理水平的出发点和归宿,就能有效提高我行风险管理和内控政策、法规、制度的执行和落实,全面加强风险管理和内控建设具有不可替代的重要作用。
一、帮忙我成长,提高了我的自信心,意志本事。在拓展的真人CS中,对于女孩而言,拿着从来没有玩弄枪,在极其不熟悉的,恶劣的训练场地中,我们努力按照教练宣布的游戏规则进行。第一局结束,10号,战绩3战损2。自信心大增。所以在接下来的第二局,在已经被树枝伤到的情景下,我的战绩继续增加。意志力得到了锻炼。 二、拓展项目中培养合作意识,改善自我人际关系。在拓展训练---穿电网项目中,有80%的时间都是处在团队内部的相互交流和沟通中。经过大家共同的努力,我们在指定的时间里成功穿越。也经过这次的拓展,我和交大网络校区的教师们更加的熟悉。因为我们以往是“CS战队”的战友们。
实用主义较为普遍。不少单位在行政管理活动中采取实用主义的做法,对单位和个人有利的事情当仁不让,没有好处的事情拱手相让,以致出现互相推诿、行政执法不作为的现象,严重地损害了行政机关的形象。五是执法环境不宽松。由于社会关系网干扰较多,来自社会上上下下、方方面面、纵横交错的关系网,无时无处不在严重地干扰着依法行政。致使许多本来并不复杂的事情,相关法律、法规条文也很明晰,但处理起来却很棘手,导致久拖不决,决而不行,行而不果。
第一:不要吝啬对学生的爱。爱是溶化剂,爱是桥梁。要想让学生爱你,首先你应该付出你的爱。为了做到这点,我把关爱渗透到平时。我从不吝啬我的爱。比如:帮学生整理衣领,拍拍学生的头,学生生病时温柔的目光,关切的话语,递上的一杯热水。天气变了,我会及时提醒学生添加衣物,注意用火、用电安全。特别是周一第四节课和周六学生该回家时,我都不忘提醒学生下楼慢点,路上注意安全,会说:周一我会迎接同学们返校的。我是老师也是母亲,我的关爱发自心底,出自真诚。我在尽力做到:随风潜入夜,润无心无声。
第一,要把以"客户为中心"的理念贯穿于我们工作的始终。"基础牢固,稳如泰山;基础不牢,地动山摇"。风险的防范与控制,说到底是人的因素起着重要作用,客户创造市场,客户创造价值,客户是我们的效益之源,是我们的衣食父母,有了客户,我们的业务才有发展,员工的价值才能够体现。 如果每个岗位的员工都能严格要求、严格规范、严格标准、严格执行规章制度,业务操作中的风险就会得到有效的遏制。要在全体员工中大力倡导、深入宣传价值最大化、资本约束、全面风险管理、风险与收益平衡、内控优先等先进理念,让全体员工了解资产质量与经济增加值、与薪酬分配的关系,自觉转变观念,将自身工作作为第一道防线纳入到风险控制体系中,引导和带领全行员工形成规范操作,防范风险的良好氛围,真正把为前台、为基层、为客户服务当作提升风险与回报管理水平的出发点和归宿,就能有效提高我行风险管理和内控政策、法规、制度的执行和落实,全面加强风险管理和内控建设具有不可替代的重要作用。
新时代青年应该立鸿鹄之志,展骐骥之跃,青年当系好人生第一粒扣。红日初升,其道大光;河出伏流,一泻汪洋。青春只有一次,谁也不应做青春的看客。中共一大召开时的13名代表平均只有28岁,而这支年轻的队伍却在风雨中迅速成长为中国人民和中华民族的主心骨。黎巴嫩的诗人纪伯伦说过,不要因为走的太远,而忘记了当初为什么出发。青年人更要扣“正”人生的第一粒扣,筑牢信仰之基,补足精神之钙,把稳思想之舵,走好人生的“每一步”。
传统的数学教学因为过分预设和封闭,使课堂教学变得机械沉闷,缺乏生气和乐趣,学生始终处于从属地位,成了教师灌输知识的容器,课堂上倦怠应付,与创造的喜悦无缘,师生都无法在课堂上焕发生命的活力。 教学过程是师生交往、积极互动、共同发展的过程,是为学而教,以学定教,互教互学,教学相长的过程。教师必须改变传统的压抑学生创造性的教学环境,通过教学模式的优化,改变教师独占课堂、学生被动接受的信息传递方式,促成师生间、学生间的多向互动和教学关系的形成。
二、教学目标 <一>、知识目标: 1、能说出人类与现代类人猿共同起源于森林古猿。 2、知道人类是由于环境的变化,在与自然环境的艰苦斗争过程中逐渐进化来的。 3、概述人类在起源和发展过程中自身形态、使用工具等方面的变化。 <二>、能力目标: 1、通过指导学生课前收集有关人类的起源和进化的资料等,培养学生收集资料、获取信息的能力。 2、通过对人类的起源和进化的探究,打开学生思路,培养他们的观察能力、想象能力、分析能力、比较问题能力及口头表达能力。
本节内容是复数的三角表示,是复数与三角函数的结合,是对复数的拓展延伸,这样更有利于我们对复数的研究。1.数学抽象:利用复数的三角形式解决实际问题;2.逻辑推理:通过课堂探究逐步培养学生的逻辑思维能力;3.数学建模:掌握复数的三角形式;4.直观想象:利用复数三角形式解决一系列实际问题;5.数学运算:能够正确运用复数三角形式计算复数的乘法、除法;6.数据分析:通过经历提出问题—推导过程—得出结论—例题讲解—练习巩固的过程,让学生认识到数学知识的逻辑性和严密性。复数的三角形式、复数三角形式乘法、除法法则及其几何意义旧知导入:问题一:你还记得复数的几何意义吗?问题二:我们知道,向量也可以由它的大小和方向唯一确定,那么能否借助向量的大小和方向这两个要素来表示复数呢?如何表示?
6. 例二:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC内∴PA⊥BC∵AB是⊙O的直径,且点C在圆周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC内,∴BC⊥平面PAC又PC在平面PAC内,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直,平面α与β垂直,记作α⊥β8. 探究:建筑工人在砌墙时,常用铅锤来检测所砌的墙面与地面是否垂直,如果系有铅锤的细绳紧贴墙面,工人师傅被认为墙面垂直于地面,否则他就认为墙面不垂直于地面,这种方法说明了什么道理?
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型. 数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型; 3.数学运算:实际问题求解; 4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.
问题二:上述问题中,甲、乙的平均数、中位数、众数相同,但二者的射击成绩存在差异,那么,如何度量这种差异呢?我们可以利用极差进行度量。根据上述数据计算得:甲的极差=10-4=6 乙的极差=9-5=4极差在一定程度上刻画了数据的离散程度。由极差发现甲的成绩波动范围比乙的大。但由于极差只使用了数据中最大、最小两个值的信息,所含的信息量很少。也就是说,极差度量出的差异误差较大。问题三:你还能想出其他刻画数据离散程度的办法吗?我们知道,如果射击的成绩很稳定,那么大多数的射击成绩离平均成绩不会太远;相反,如果射击的成绩波动幅度很大,那么大多数的射击成绩离平均成绩会比较远。因此,我们可以通过这两组射击成绩与它们的平均成绩的“平均距离”来度量成绩的波动幅度。
可以通过下面的步骤计算一组n个数据的第p百分位数:第一步:按从小到大排列原始数据;第二步:计算i=n×p%;第三步:若i不是整数,而大于i的比邻整数位j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第i+1项的平均数。我们在初中学过的中位数,相当于是第50百分位数。在实际应用中,除了中位数外,常用的分位数还有第25百分位数,第75百分位数。这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数。其中第25百分位数也称为第一四分位数或下四分位数等,第75百分位数也称为第三四分位数或上四分位数等。另外,像第1百分位数,第5百分位数,第95百分位数,和第99百分位数在统计中也经常被使用。例2、根据下列样本数据,估计树人中学高一年级女生第25,50,75百分位数。
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
【例3】本例中“p是q的充分不必要条件”改为“p是q的必要不充分条件”,其他条件不变,试求m的取值范围.【答案】见解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因为p是q的必要不充分条件,所以q?p,且p?/q.则{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范围是(0,3].解题技巧:(利用充分、必要、充分必要条件的关系求参数范围)(1)化简p、q两命题,(2)根据p与q的关系(充分、必要、充要条件)转化为集合间的关系,(3)利用集合间的关系建立不等关系,(4)求解参数范围.跟踪训练三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,求实数a的取值范围.【答案】见解析【解析】因为“x∈P”是x∈Q的必要条件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范围是[-1,5].五、课堂小结让学生总结本节课所学主要知识及解题技巧
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。