首先,我们从秋游清华园开始,寻找幼儿兴趣点。(图 1 ) 观察认识秋天的花随后,我们又参观了清华水果店,认识了秋天的水果。在老师及工作人员的引导下,孩子们对水果产生了浓厚的兴趣。(图 2 )带领幼儿参观水果店,认识秋天的水果。观察到的水果有:海棠、枣、梨、苹果、李子、葡萄……带领幼儿参观时,为增强幼儿的社会交往能力,我们鼓励并引导幼儿亲自购买水果。(图 3 )陈晨有礼貌地买枣,并付款在购买水果的过程中,大部分幼儿都能做到自然大方,并能准确地运用您好、请、好吗、谢谢等礼貌用语。回班后,通过听老师的讲解孩子们知道了水果的营养价值高,小朋友要多吃水果的道理。之后,大家开始分享水果感受着与大家分享的快乐。(图 4 )小朋友在一起分享水果的美味一系列的秋游及参观活动结束后,孩子们对秋天的水果产生了浓厚的兴趣,他们开始互相交流自己认识什么水果、爱吃什么水果、什么水果漂亮等,有的小朋友主动请老师给他们画水果,还有的小朋友把家里的水果带到幼儿园来。我们根据我们班幼儿的年龄特点和发展需要,初步确定出了以下活动方案二、主题网络的建构 主题活动方案的建构是以我们班幼儿发展水平和教育目标为依据,尊重孩子们的兴趣和困惑,同时注重幼儿第二语言的启蒙和初步的引导。
1、讲述故事《戴眼镜的小猫》(投影幼儿用书)故事内容:在一座红房子里,住着一位老奶奶和一只小猫。老奶奶年纪大了,每次看报纸时都要戴一副紫色的眼镜,小猫看了很羡慕。(做戴眼镜看报纸状)有一天,老奶奶看完报纸,没来得及把眼镜放好,就被另一位老奶奶叫走了。小猫终于有机会了,它戴着老奶奶的眼镜,高兴地往门口跑,走到大门口,一看,哎呀,门槛怎么变高啦!它用足力气使劲往上跳。只听“咚”的一声,小猫重重地被摔倒在地上。小猫又觉得肚子饿了,想找点东西吃。它刚走到老鼠洞口,就看见对面走来一只很大很大的老鼠。(做肚饿状、大老鼠状)小猫吓得掉头就跑。它边跑边想:这准是一副魔镜,我还是把它给老奶奶放回去吧!小猫悄悄的把眼镜放到了老奶奶的桌上。故事讲完了,好听吗?(好听)我们现在来回忆一下故事讲了什么。(根据幼儿用书上的图画,提问题)——在一座房子里住着谁?(老奶奶和一只小猫)——老奶奶每次看报纸都要戴什么?为什么?(眼镜因为老奶奶年纪大了,眼睛不好)——小猫看见老奶奶戴眼镜很羡慕,有一天它戴上眼镜高兴地跑到大门边,发生了什么?(门槛变高,被重重地摔倒在地上)——小猫肚子饿了,它跑到老鼠洞口又发生了什么?(看见一只很大很大的老鼠,吓得掉头就跑)
2、实物汽球数只。故事录音磁带1盒,录音机1架。纸(一开大小)1张,笔若干支,颜料(红、绿、蓝、咖啡色)。 活动过程: 一、听故事录音。 1、教师介绍故事名称,提出听故事要求:他细听听故事讲了些会么?帮事里有谁?它们说了些什么话? 2、小朋友听故事。 3、小朋友听完故事后,老师问:故事叫名字?故事里有谁? 二、学讲故事中的对话和短句。 老师运用边讲边画的形式,帮助幼儿理解故事内容,并学讲故事中的对话和短句。 故事第一段--小汽球帮助小鸟。 1、老师边讲边画:天空中飘着几朵白云,风推着云儿慢慢地走,一只小汽球一边唱一边飞来了(出示实物小汽球):“啦啦啦,啦啦啦,我是快乐的小汽球,谁有困难我来帮。”(请幼儿跟学一遍)。 2、老师继续边讲边画:小汽球高兴地往前飞,飞过绿色的草地,飞过高高的树梢,突然听到呜呜的哭声,是谁在哭呀?(出示小鸟)原来草地上有只小鸟在哭。 小汽球连忙问……(请幼儿一起学讲故事中的对话),重点学说短句:“别着急,我来帮助你。” 小汽球就让小鸟骑在自己的背上,带着小鸟一起飞,把小鸟送回了家(演示教具)。
为大家收集整理了《XX年3月国旗下的讲话:三月学雷锋》供大家参考,希望对大家有所帮助!!!各位老师,各位同学:大家好!阳春三月,是我们学校的学雷锋月,也是我们学习雷锋的开始月。今天,我国旗下演讲的题目是“帮助别人,快乐自己”。当你在大街道上跌倒,有人在一旁嘲笑你,却没有扶你的时候; 当你的钱包被小偷偷走,旁人看见却不敢吱声的时候; 当你一个人需要人帮助,却没有人愿意帮助你的时候。各位同学,你,会是什么心情呢?想必会酸、苦、涩。可就在这时候,有一个人伸出了自己的手,去扶你,去帮助你,你是喝令他走,并说这种精神过时了,还是心存感激地接受帮助呢?答案是很明显的。雷锋精神依旧在我们身边灼灼发亮,雷锋精神的实质就是全心全意为人民服务,我们作为一名福高人,应该尽自己绵薄之力帮助别人,展现福高学子的奉献精神。帮助别人,快乐自己。
以诚以信,交一份无怨无悔的人生考卷各位老师、同学们:今天我讲话的题目是《以诚以信,交一份无怨无悔的人生考卷》,校长期末考试前后国旗下讲话稿。今天的这次讲话是第一次国旗下讲话,也是本学期的最后一次国旗下讲话,恰从今天开始,反映我校一学期教学成果的期末考试将逐步全面展开。在教学成果即将归仓的时候,我真诚地祝愿,祝愿老师们一学期汗水的结晶是丰收的硕果;我殷切地期望,期望同学们半学年心血的凝聚是成功的甘甜!在新春佳节将至的时候,我热忱地祈祷,祈祷我们的老师、我们的同学、我们的集体在新的一年里将更加的朝气蓬勃、奋发有为!岁末年初,举首回眸,心潮难平,感慨良多!我深深地觉得,觉得时光如电、岁月有痕,时间,它是一位公正而有心的天使,她稍纵即逝地匆匆来去,将给予别人的那份光阴也一秒不少地给予了你,但在她匆匆来去的足印中,却有着精确而公道的记录:记录着奋斗者的成功与欢乐,耕耘者的艰辛与收获,受益者的感动与思虑;记录着颓废者的叹息与悲观、偷安者的庸碌与悔恨,放纵者的执迷与教训……我想,本次期末考试的结果将能够如实地为我们的教学情况反映出这种精确的记录。
课题:1、欣赏教学---《北方水草茂盛的家乡》。2、集体表演《北京的金山上》。重点与难点:本单元的重点是通过各种音乐实践活动使学生了解和认识所选的歌曲和乐曲,扩大学生的艺术视野,从而加深对音乐地域文化的印象。难点是音乐材料比较多,教师如何在有限的教学时间内较好的完成教学任务。教学目标:1、通过欣赏,了解藏族民歌的基本常识,认识乐器的音色。2、通过排练、表演《北京的金山上》,培养下野生集体合作意识,以及表现音乐的热情和能力。教学过程:(一)欣赏1.欣赏《我们的新毡房》(1) 让学生结合乐谱,分析这首歌曲的结构。(2) 根据学生分析,总结:这首歌曲旋律节奏自由,音乐情绪活泼、奔放,具有较强的动感。结构为带再现的二段体。2.《北方水草茂盛的家乡》(1) 让学生边听录音,边看雪域高原的图片。(2) 让学生讨论:这首歌曲在演唱风格上有什么特点(高亢、嘹亮、装饰音多)?这首歌曲的后三局旋律上有什么异同?(3) 让学生说说以前还听过哪些藏族歌曲?(《洗衣歌》《北京的金山上》等)这些歌曲于雪域高原的地理环境有什么关联? (四)小结
教学目标:用热情的情绪演唱歌曲《在那遥远的地方》,感受青海民歌的风格。教学准备:歌曲谱例、电子琴等。教学方法:听唱法、听赏法等。教学过程:一、激趣导入介绍青海,了解青海民俗。二、教学新课1、简介青海的别样风情。2、学唱《在那遥远的地方》。 1)听歌曲范唱,初步感受歌曲情绪。2)熟悉歌曲旋律。3)分段学唱歌词。①集体朗读歌词。②听琴分段学唱歌词。4)完整演唱歌曲。教学后记:结合民族音乐文化,让学生走进青海的神奇土地,使学生在了解歌曲的同时培养了审美情趣,激发了学生学习兴趣。
教学过程:一、师生间相互问好师:同学们下午好!生:老师好!二、进行新课 1、播放歌曲《在那遥远的地方》。2、放映幻灯片,欣赏有关于青海的图片。3、出示歌谱,演唱歌曲《在那遥远的地方》。 师:接下来,同学们听老师演唱这首歌一遍,然后我们大家一起把这首歌的歌谱唱一遍,再把歌词填进去来唱一遍。在演唱歌曲的时候,同学们要用抒情、欢快的声音,准确的音高、节奏,自信地演唱歌(演唱歌曲) 师:同学们唱的很不错,接下来老师要请2个女同学来分别演唱这首歌曲的一、二段,在第三、四段的时候,两个人再合起来唱,有没有同学主动起来唱啊?(学生回答) 师:XX同学,XX同学,请认真听着老师的伴奏,把握住歌曲的节奏和速度,注意3/4拍的强弱规律。(学生表演。)三、欣赏流行音乐《在那遥远的地方》。
教学过程:一、介绍一般青海民歌节奏,旋律特点要求学生熟悉。二、教师播放课前准备好的音乐让学生听,形成初步的印象。三、视唱歌曲: (1)板书歌曲中难点节奏,教师与学生同打。 (2)打开书,试打全曲节奏,采用分组轮打、接龙的方式使每个学生都能掌握。 (3)视唱歌曲旋律,采用小组接龙方式使学生熟悉歌曲旋律。 (4)如有时间,把歌词打带入其中。四、填词教学。五、练习。六、检查练习效果,查缺补漏,对学生难掌握的做重点教唱。七、全班起声演唱《在那遥远的地方》。八、小结组织下课: 今天我们学习了青海民歌的基本节奏及《在那遥远的地方》这首歌,了解了青海民歌基本特征,作曲家王洛宾《在那遥远的地方》作曲背景,希望通过这节课简单的学习能让大家对新青海民歌有所了解。九、作业布置: 下去把这首歌熟练,下节课检查。
尊敬的老师们、亲爱的同学们,大家早上好,我是高二(3)班的童xx,今天我演讲的题目是“驱赶秋日的寒意,点燃运动的热情”。为了丰富校园文化生活,展示学校教育成果,促进学生德智体美劳全面发展,本周我校将举行秋季运动会。这将是一次展示力与美的盛会,也将是一次体魄与耐力的比拼。运动会是检验学校水平高低的一个标志,也是各个班级、每位同学展示风采的一个舞台。运动会是一个竞技场,优胜劣汰,容不得半点虚假。同一起跑线上,你付出多少汗水,就会有多少回报。没有顽强的拼搏,不会有优异的成果;没有坚定的信心,跑道上不会有你亮丽的身影。体育舞台是人生舞台的一个缩影,鲜花和掌声是献给脚踏实地、顽强拼搏、不畏艰难的人。“重在参与”展现着我们的积极心态,“为班争光”蕴含着我们的集体主义情怀,赛场上人人都是胜利者,结果并不重要智力与体力才是我们追求的目标。运动会不仅可以检验我们的运动水平和班级凝聚力,还可以充分展示我校同学朝气蓬勃的精神面貌。运动会不仅比运动水平运动精神与全校师生对德、智、体全面发展的教育方针的全面理解。
在教练的介绍下,我们都逐渐了解到“团队训练”的含义,我了解到“团队训练”具有“磨练意志、陶冶情操、完善自我、熔炼团队”内涵,是一项来源于挑战极限的训练活动,旨在激励人的斗志,激发潜在能力,创造性的发挥人的团队能力。虽然只有短短一天时间,但给予我的启发和体验却是一笔永久的精神财富,无论将来我身处何种岗位,只要用心体会就能得到十分有益的人生感悟。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
规则讲完后,孩子们围坐成半圆形,眼睛闭上,手背在后面手掌向上,这样就可以接住老师递过来的莲子。大家开始念游戏儿歌“种莲子”:种莲子,种莲子,不知莲子种哪家。东一家,西一家,到了明年就开花。老师边说儿歌边从每个孩子身后走过,并且把莲子悄悄放入一个孩子手中。最后走到中央,描述这个孩子的特征,如“我把莲子种在一个短头发的女孩手里,她穿着黄衣服、蓝裤子和黑皮鞋”,请孩子们都来猜,猜对了,有莲子的小朋友就要到前面来说“我就是穿黄衣服、蓝裤子和黑皮鞋的短头发小女孩”,然后游戏继续。在大家一起念“种莲子”儿歌的时候,老师要注意纠正个别不正确的发音,鼓励孩子们声音宏亮的念儿歌,提醒孩子种莲子和拿到莲子以后都要注意保密,为孩子们自主游戏做好铺垫。这一步非常重要。为了保证孩子在下一步按规则玩游戏,在孩子感知理解游戏规则的基础上,老师根据孩子掌握程度可以带领着多玩几遍这个游戏。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。