【设计意图】本环节引导学生走进文本,通过分析千里马的形象,勾连写作背景来了解文章寓意。从而更加深入地理解作者的思想感情。五、总结存储1.教师总结《马说》是经典名篇,文章篇幅短小,仅151字,言简意赅,但引人深思,是“神完气足”之作。韩愈“不平则鸣”的呐喊,是对社会现实的反思,也是一种对于人的生存状态的关怀,是中华优秀传统文化中一笔宝贵的精神财富。2.布置作业在我国封建社会,人才一旦没有得到统治者的赏识,就会被埋没,甚至终生不能施展抱负。我们生活在“海阔凭鱼跃,天高任鸟飞”的时代,只要你有才就一定能有所作为。“千里之行,始于足下。”让我们从现在开始练就本领,以备“千里之行”。课下请同学们以《世有千里马,然后有伯乐》为题,写一篇不少于600字的随笔。
〖设计意图:使学生更深刻更正确地领悟价值观的重要作用,初步树立了正确的价值观,并下决心在价值观的引导下要做一位“诚实守信”的好少年。〗第四环节:快乐品味价值1. PPT分三个层面出示24字核心价值观,请全班同学集体朗诵,并尝试用自己的.话理解24个字的内涵。2.庄严宣誓中队长小结发言后一同面向队旗面向五星红旗庄严宣誓: 接着诵读梁启超先生的《少年中国说》〖通过这一环节让学生进一步巩固核心价值观并达到背诵的目的。让24个字融化在心间,铭刻在脑海里。〗以上四个环节由浅入深, 层层递进,充分调动了学生的多种感官参与活动,促进了学生身心和能力的发展,顺理成章的达到了本次活动的目的。以上就是我对《从小牢记价值观,做诚实守信少年》这节少先队活动课的阐述。存在的不足之处还恳请各位评委老师批评指正。谢谢!
2. 培养观察、比较能力和初步的判断推理能力。活动准备: 1.教具:黑白序列的排序图样。2.学具:①幼儿分组操作材料:a 铺地砖b 串彩链c 围围墙d 排排队 ②花片 ③黑白方块若干。3.环境创设:小动物的家。活动过程:(一)以小朋友为“小动物布置新家”引入课题。(二)幼儿自主探索物体简单的排序规律。1.幼儿分组操作。a 铺地砖:提供蓝、白两种颜色的泡沫地砖,让幼儿按颜色变化规律排序 b 围围墙:提供四种颜色炮弹玩具,让幼儿按颜色及节数按规律排序。c 做彩链:提供不同长短、宽窄、颜色长条手工纸让幼儿根据纸条多种特征串成彩链条。d 种树:提供高矮、品种不同的树木,让幼儿按其形状、高矮不同的规律排序。
活动准备: 1、5以内加法算式卡片若干张,加法图片若干张,口述图片5张。 2、红、黄、绿队牌三张、抢答器(锣)三个,数字贴纸(选手号)若干张、统计牌一个,奖牌榜三张、 3、红苹果若干个、奖状若干张、颁奖音乐一首。 活动过程: 一、引题 1、师:大家好,欢迎你们来到快乐数学大本营,我是快乐数学栏目主持人——小问号。我们快乐数学大本营的口号是:快乐数学,快乐无限!我们现在整齐、响亮地把口号喊出来:快乐数学,快乐无限!ye! 首先我来介绍今天参加我们快乐数学大本营的三个方队,他们是(举队牌)——红队,欢迎你们!他们是——黄队,欢迎你们!他们是——绿队,欢迎你们!接下来我们马上进入快乐数学第一关。 二、快乐数学第一关。 1、师:第一关:必答题。红黄绿队的每一位选手都要回答一道题目,每答对一题,奖励一个红苹果。看哪一队的红苹果个数最多。 2、师:答题开始。请听题3+3=?(教师请三位选手轮流回答,提醒幼儿把题读完整),例幼儿:2+3=5 师:(出示正确答案)回答正确。(三位选手依此回答完毕)。
2、通过品尝饼干、观察饼干、触摸饼干,感知形状的基本特征,大胆想象其他圆形、正方形、三角形的物体。 3、在活动中愿意大胆的讲述。 活动准备: 1、教具: ——圆形、三角形、正方形的饼干若干,放置托盘中,并用盖布盖住。 ——圆形、三角形、正方形图片各一个。 2、学具 ——幼儿操作材料每人一份,彩色笔若干。 ——各种类似圆形、三角形、正方形的物品,例如:圆盘子、书、三角铁、镜子、积木、三角尺、插花等,散放在活动室的四周。
尊敬的各位老师,亲爱的同学们:大家早上好。我今天和大家分享的话题是《让你我都是三月的春风》。三月的一切都是美好的,嫩黄的叶芽,婀娜的枝条,在空中飘舞的曼妙的身姿,这是濯缨池畔的柳树;满树的花苞,怒放的花朵,沁人心脾的娇美的花影,是真三楼前的桃树和杏树;美好的三月,既是一切花草树木萌发绽放的季节,更属于我们瑞中学子快乐生长,蓬勃发展的时期。花草万物的萌动绽放,是因为有春风春雨的鼓动,爱抚和滋润;少年学子的快乐成长、蓬勃发展,同样需要师长和他人的鼓动,爱抚和滋润。作为青年的我们,不仅仅需要他人的鼓动、关爱和帮助,我们也可以做他人的春风春雨。XX校长在本学期第二周的升旗仪式上作了《建设美好而松弛的教育关系》的讲话。今天,我就如何确立自己和外界的关系和大家作以交流探讨。
2、能用优美动听的声音唱《大大的馒头哪里来?》这支歌曲。 3、能在美劳区用各种材料对面制品进行表征活动。 活动准备: 1、面制品的照片、小麦、磨面粉与制作馒头过程进行录象。提供面制品表征活动的材料放到美劳区。 2、活动前样幼儿回家分头调查其制作过程并做好记录。 活动过程: 一、 信息分享(回忆馒头的制作过程) 讨论:馒头是怎样做成的?(让幼儿将看到的用较完整的语言进行讲述) 二、观看面包、面条等各种面点的制作过程,感受工作人员为了让我们吃上可口的面点而辛勤地劳动。
三、科学育人抓质量不是只抓课本知识,而是要从抓习惯、抓细节、抓学困生、抓读书等方面入手。抓质量要从培养学生良好的学习习惯入手,良好习惯的培养,只靠班主任一人是心有余而力不足的,需要每一位教师齐心协力,齐抓共管。抓质量要注重细节,如语文要从生字、背诵开始夯实基础,数学要从基本计算、每一个小知识点、读题审题点滴落实。抓好每个细节,进而形成习惯,学生的成绩自然就会提高。抓质量要把目光投向学困生,如课堂上设计一些学困生能够回答上来的问题并及时表扬他们,不断增强自信,课后适当开“小灶”,加强指导,还要跟踪辅导,持续关注,增强他们的学习主动性和积极性,成绩也会有提高。抓质量还要抓读书,要培养学生的读书兴趣,让读书成为学生的生活方式,不仅课上读,还要在课外读,不仅让学生读,教师自己更要读。
【活动准备】1、准备蚂蚁、蟋蟀、蜜蜂、孔雀等动物的图片。2、《小动物之间的联系方式》的录相。3、活动前,请幼儿找相关资料,简单了解小动物传递信息的方式及幼儿查找的小动物联络图文表。【活动过程】一、随音乐〈〈大家一起来〉〉进入活动场地 教师用拥抱、握手、拉幼儿舞蹈、动作、图画、语言等方式,让幼儿感受人类传递信息的方式方法(有动作、图文、声音、表情、新闻媒体等方式)从而印发幼儿了解动物之间的联络方式。
将蜡烛点燃请一幼儿用玻璃杯罩住,观察有什么现象发生?幼儿作答,把碎纸屑放在桌子上,幼儿分组:用手在周围煽动,观察纸屑的变化。让幼儿感受我们的周围充满了空气,只是我们看不见它。反思:本活动让幼儿对实验中发生的现象产生兴趣,在实验中让幼儿反复玩,使幼儿在操作;探索的基础上获得经验,玻璃杯中没有空气,外面的空气就会把水压入杯中卡纸就被吸住,水不会倒出来。同时我在这课添加了用杯子去盖点燃的蜡烛,一下蜡烛就灭了。空气可以支持燃烧。这样吸引幼儿的注意,目的是通过丰富多彩的活动,为幼儿建立一个探索、尝试与交流的平台。,幼儿容易理解。在活动中我运用了启发提问法,观察发现法,引导发现法,实验操作法。幼儿通过猜谜语——寻找空气——试验操作的教学环节,让抽象的自然想象变得具体化了,课堂气氛很活跃,突出了活动的重难点,通过科学探索活动,丰富幼儿的生活经验,利用简单的科学实验使幼儿感知空气的存在,也是这次活动的亮点,让幼儿理解我们的生活离不开空气。空气无处不在,只要有空隙的地方就有空气。也培养了幼儿的认知能力。
二、说目标 1、通过活动,幼儿学习按某一特征有规律的间隔排列。 2、在探索寻找活动中,选择不同的方法尝试有规律排列;并培养幼儿有初步的推理能力,发展幼儿创造力。三、说重点 活动的重点:能在各种事物中找出其不同的排列规律。四、说难点 活动的难点:在有规律的排列中会表现2——3种规律。五、说教法 整个活动中,我运用了游戏法、观察法、操作法、尝试法等几种方法,动静交替,使幼儿在看看、想想、说说、做做等活动中,边玩边学。还为幼儿创设了一个能够使其自由探索、发现、生动活泼的环境,让幼儿在快乐愉悦的氛围中学习知识,提高能力。
爸爸建议说,只要让你快乐的事都值得去感激.蓝蓝想了想对爸爸说,阳台上的茉莉开了,那么香,那么美,这事令她很开心,她要谢谢花开了!9岁的蓝蓝已开始会感激花开了.到了秋天,她就会感激硕果;到了冬天,她还会感激......一、感激无处不在1、蓝蓝才九岁,已经开始会感激花开了.你呢?说说你感激的一切.促进你成长的人、让你快乐的事、一切美好的事物都值得去感激.2、背景音乐《沉醉在风中》有请一位同学上台展示.我感谢....感谢父母给了我生命和无私的爱;感谢老师给了我知识和看世界的眼睛;感谢朋友给了我友谊和支持;感谢书籍,生命因你而多了充实与清新;感谢所有陪伴我的人,你们使我的生命不再孤单;感谢快乐,让我幸福地绽开笑容,在美好生活着;感谢伤痛,让我学会了坚忍,也练就了我释怀生命之起落的本领;感谢鲜花的绽放,绿草的如茵,鸟儿的歌唱,让我拥有了美丽,充满生机的世界;感谢生活所给予我的一切,虽然并不全都是美满和幸福;
同志们:过去的一年,大家干的很充实,走的很坚定,拼的很努力,各条战线成绩斐然。今年随着疫情防控政策优化,拼经济、争项目、抢招商也已经成为全国各地开局的共识,就我省来说,上班第一天,就组织开展了第七期“三个一批”活动,第二天,市里又接着召开全市项目建设和招商引资动员大会,通过这几天的高密度工作,都充分释放出一个信号,今年注定是奋力拼抢、紧张忙碌的一年,也必将会成为硕果累累、充满喜悦的一年。今天,我们召开2023年全区项目建设和招商引资动员大会,就是要动员全区上下进一步树牢“争”的意识、焕发“抢”的斗志、拿出“拼”的行动,项目为王抓投资,开足马力拼经济,确保实现“开门红、全年红”。下面,我讲四点意见。一、全面发力拼项目坚持一切工作向项目发力,一切要素向项目集中,一切服务向项目聚集,迅速发起项目建设新攻势,强劲注入振兴发展新动能。一要做实项目谋划储备。经过优化调整,今年全区首批谋划项目X个,总投资X亿元,年度计划完成投资X亿元。实事求是的说,我们的项目盘子还不够大,总投资仅占全市的6.7%,年度计划完成投资仅占全市的6.2%。要支撑全年经济增长7%以上的目标,我们必须持续加大项目谋划包装储备力度,加快形成大项目顶天立地、小项目铺天盖地、大小项目百舸争流的生动局面。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
人格是最高的学位中华民族自古以来都推崇高尚的人格,孔子之仁,孟子独善其身,陶潜不为五斗米而折腰,文天祥留取丹心照汗清------大凡古之圣人,皆有高尚的人格。人格伴随我们一生,一路前行,我们可曾思考做人!曾听说这样一个故事,一位年轻人去请教上世纪最伟大的大提琴家卡萨尔斯成功之道,面对满腹激情的年轻人,他只言简意赅地回答:先成为优秀而大写的人,然后成为一名优秀而大写的音乐人,而后就会成为一名优秀大提琴家!对学做人是人生观的基础,无论从事音乐、文学、科技、艺术,乃至做一个平凡极致的人。那些惊世骇俗的大师们,有谁不拥有崇高的人格呢?世纪老人冰心,已临近人生的终点,心中依然牵挂着年老病人的状况;国学大师季羡林身为副校长,为新生看行李,尽职尽责,直至学生归来,已近一个小时,大作家沈从文,一生醉心于人性美------,我们喜欢大师们的作品,却有谁能透过字里行间,窥探大师们的人格?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。