中国,北京, 公司(以下简称“受让方”)为一方, 国 市 公司(以下简称“出让方”)为另一方; 鉴于出让方是 技术的专利权持有者; 鉴于出让方有权,并且也同意将 专利技术的使用权、制造权和产品的销售权授予受让方; 鉴于受让方希望利用出让方的专利技术制造和销售产品; 双方授权代表通过友好协商,同意就以下条款签订本合同。 第一条 定义 1.1 “专利技术”——是指本合同附件一中所列的技术,该技术已于××年×月×日经中国专利局批准,获得了专利权,其专利编号为 。 1.2 “出让方”--是指 国 市 公司,或者该公司的法人代表、代理和财产继承者。 1.3 “受让方”--是指中国 公司,或者该公司的法人代表、代理和财产继承者。 1.4 “合同产品”--是指合同附件二中所列的产品。 1.5 “合同工厂”--是指生产合同产品的工厂,该工厂在 省 市,名叫 工厂。
1. 签约之前当事人应当仔细阅读本合同内容。2. 本合同文本中涉及到的选择、填写内容以手写项为优先。3. 本合同以盖有“ 留学生教育服务中心”正式公章及法人代表签章为有效合同。4. 本合同中涉及的中介服务费必须向 留学生教育服务中心财务交纳(或汇入 留学生教育服务中心指定账户中),以收到 留学生教育服务中心开具的正式票据为收款凭证。如无 留学生教育服务中心的正式票据,受托人有权停止履行该合同中任何的责任并对委托人交付的费用不付任何责任。5. 本合同中涉及学校申请费、使馆签证费、注册费、学校医疗保险费、住宿费、监护人费、接机费、学费、押金等,必须由受托人通知委托人向 留学生教育服务中心财务或相关学校、领馆等机构交纳,以收到 留学生教育服务中心或办事处开具的代收款票据为收款凭证。如无 留学生教育服务中心开具的代收款票据,涉及一切款项转、交、退等责任,受托人概不负责。6. 委托人在办理申请过程中发生的护照、公证、体检、翻译、机票等杂费应向有关办理机构缴纳,如委托受托人代办,款项必须向 留学生教育服务中心或办事处财务交纳,并以 留学生教育服务中心开具的代收款票据为收款凭证,如无 留学生教育服务中心的代收款票据,受托人对此业务概不负责。
中国,北京, 公司(以下简称“受让方”)为一方, 国 市 公司(以下简称“出让方”)为另一方; 鉴于出让方是 技术的专利权持有者; 鉴于出让方有权,并且也同意将 专利技术的使用权、制造权和产品的销售权授予受让方; 鉴于受让方希望利用出让方的专利技术制造和销售产品; 双方授权代表通过友好协商,同意就以下条款签订本合同。 第一条 定义 1.1 “专利技术”——是指本合同附件一中所列的技术,该技术已于××年×月×日经中国专利局批准,获得了专利权,其专利编号为 。 1.2 “出让方”--是指 国 市 公司,或者该公司的法人代表、代理和财产继承者。 1.3 “受让方”--是指中国 公司,或者该公司的法人代表、代理和财产继承者。 1.4 “合同产品”--是指合同附件二中所列的产品。 1.5 “合同工厂”--是指生产合同产品的工厂,该工厂在 省 市,名叫 工厂。 1.6 “净销售价”--是指合同产品的销售发票价格扣除包装费、运输费、保险费、佣金、商业折扣、税费、外购件等费用后的余额。
中国,北京, 公司(以下简称“受让方”)为一方, 国 市 公司(以下简称“出让方”)为另一方; 鉴于出让方是 技术的专利权持有者; 鉴于出让方有权,并且也同意将 专利技术的使用权、制造权和产品的销售权授予受让方; 鉴于受让方希望利用出让方的专利技术制造和销售产品; 双方授权代表通过友好协商,同意就以下条款签订本合同。 第一条 定义 1.1 “专利技术”——是指本合同附件一中所列的技术,该技术已于××年×月×日经中国专利局批准,获得了专利权,其专利编号为 。 1.2 “出让方”--是指 国 市 公司,或者该公司的法人代表、代理和财产继承者。 1.3 “受让方”--是指中国 公司,或者该公司的法人代表、代理和财产继承者。 1.4 “合同产品”--是指合同附件二中所列的产品。 1.5 “合同工厂”--是指生产合同产品的工厂,该工厂在 省 市,名叫 工厂。 1.6 “净销售价”--是指合同产品的销售发票价格扣除包装费、运输费、保险费、佣金、商业折扣、税费、外购件等费用后的余额。 1.7 “专利资料”--是指本合同附件一中所列的有关资料。
第一条 装配项目乙方向甲方提供装配 (产品)____ 套(或件)所需的散件;甲方装配后将成品交付乙方。第二条 交付来件与加工成品的数量和时间乙方将于 年 月至 年 月 日,每月向甲方提供____散件____套,并负责运至____ 港口(或车站)交付甲方;在甲方收到散件后的____个月内(或自 年 月 日至 年 月 日)分批将装配后的成品负责运至 港口(或车站)交付乙方。第三条 加工费甲方为乙方进行装配的加工费,每件(或套)计 币 元。第四条 付款办法乙方将不作价的散件运交甲方,加工费由乙方给甲方开出即期付款信用证。第五条 来厂专家和技术培训根据实际需要,乙方有义务向甲方派遣专家并为甲方培训必要的技术人员,来厂专家和培训人员的数目、时间、任务、以及费用负担等,由双方另行商议。第六条 运费、保险费
双方为开展来料加工业务,经友好协商,特订立本合同。第一条 加工内容乙方向甲方提供加工________(产品)________套所需的原材料,甲方将乙方提供的原材料加工成产品后交付乙方。第二条 交货乙方在合同期间,每个月向甲方提供________原材料,并负责运至________车站(经________港口)交付甲方;甲方在收到原材料后的________个月内将加工后的成品________套负责运至________港口交付乙方。第三条 来料数量与质量乙方提供的原材料须含____%的备损率;多供部分不计加工数量。乙方提供给甲方的材料应符合本合同附件一(略) 和规格标准。如乙方未能按时、按质、按量提供给甲方应交付的原材料,甲方除对无法履行本合同不负责外,还得向乙方索取停工待料的损失;乙方特此同意确认。第四条 加工数量与质量甲方如未能按时、按质、按量交付加工产品,在乙方提出后,甲方应赔偿乙方所受的损失。
优化基层法律服务供给,率先挂牌运行四级社会治理综合服务中心,实现公共法律服务实体平台、“一村一法律顾问”全覆盖。深入实施乡村(社区)“法律明白人”“十百千”培育工程,依托公共法律服务站(室)、社会矛盾调处“一站式”服务中心,将普法融入法律服务和排查、化解矛盾纠纷各环节,打通法治宣传“最后一公里”。“掌上普法”“语音普法”“指尖普法”步入常态,有效整合地方网络媒体资源,积极发挥网络平台优势,以云课堂、微讲堂、线上谈等形式,持续开展线上普法活动。“海西州普法”公众号影响力稳居全省司法行政系统新媒体榜前列,“德令哈普法”视频号、抖音号持续推送民法典系列原创视频110期,阅读量达58.1万余次,“都兰法院”“德令哈警视”等平台开设蒙古、藏、汉三语普法栏目,用通俗易懂的语言、鲜活生动的事例,全方位、多角度开展普法宣传。走进海西州,法治的春风扑面而来,普法的春雨润物无声。一幅幅和谐的优美画卷,一个个平安有序、文明美好的景象,让人真切地感受到“八五”普法给群众带来的获得感、幸福感、安全感。
三是移风易俗方面,目前部分村仍存在相互攀比礼金金额、“要面子不要里子”等问题,增加了农民群众的经济负担;部分村红白理事会存在流于形式、工作开展不够规范、相关制度不够明晰等问题。四是文明创建方面,一是认识上还不够统一。少数同志认为,文明创建不是自己分管的事,对安排的网格管理和包保责任态度不积极,不能做好安排、亲自过问、亲自督查、亲自问效。二是集镇建管水平还亟待提升,返潮现象严重。培育和践行社会主义核心价值观的宣传氛围还需浓郁;沿街商住户“门前三包”责任制度还没有落实,占道经营、店外经营、乱泼乱倒现象仍存在,乱搭乱建、乱摆乱放、乱拉乱晾还较严重;车辆乱停放,特别是占道停车现象突出。三、下一步工作计划(一)持续推进新时代文明实践(所)站建设。
教学日期20 年 月 日课时安排第 节,共 节科 目 授课班级 授课教师 教具准备 课 题
教学目标1、让学生感受中国文字的艺术。 2、让学生了解中国文字书写方法。 3、让学生了解草字头字的特点 4、草字头书写规则。重点草字头书写规则难点草字头书写的特点、技巧工具毛笔、字、墨方法临摹练习
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.探究点三:工程问题一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?解析:首先设乙队还需x天才能完成,由题意可得等量关系:甲队干三天的工作量+乙队干(x+3)天的工作量=1,根据等量关系列出方程,求解即可.解:设乙队还需x天才能完成,由题意得:19×3+124(3+x)=1,解得:x=13.答:乙队还需13天才能完成.方法总结:找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作效率×工作时间=工作总量,当题中没有一些必须的量时,为了简便,应设其为1.三、板书设计“希望工程”义演题目特点:未知数一般有两个,等量关系也有两个解题思路:利用其中一个等量关系设未知数,利用另一个等量关系列方程
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
A、B两码头相距140km,一艘轮船在其间航行,顺水航行用了7h,逆水航行用了10h,求这艘轮船在静水中的速度和水流速度.解析:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h,列表如下,路程 速度 时间顺流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h.由题意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:这艘轮船在静水中的速度为17km/h,水流速度为3km/h.方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.三、板书设计“里程碑上的数”问题数字问题行程问题数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法),介绍化归思想及其运用,既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题能力.
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。