一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
家是圆心,我们都是圆内的点,爸爸、妈妈和我,我们围着圆心在走,走出一个圆满的家。(开篇点题。)清风摇曳梧桐树的小时候——(独立成段,设置场景,富有意境。)月亮又悄悄爬上了窗外的梧桐树,我靠在床头,该是听妈妈讲故事的时候了,可是妈妈又晚督班去了。妈妈是一名老师,每天兢兢业业,总有忙不完的事情。每次回家,总是带着匆匆的脚步,充斥着紧张的氛围,有时怀里还抱着几本厚厚的书。“妈妈,你不爱我了吗?为什么不在我身边?”我握住妈妈的手,她的手上还有白色的粉笔灰。“孩子……”妈妈哽住了,转过头去,眼里含着透明的水珠。她摸了摸我的头,指了指窗外的月亮:“月儿圆的时候,妈妈就会回来。”我蹦蹦跳跳跑到窗前,每个夜晚不停地寻找那圆圆的月亮——那是妈妈回来的希望。在梧桐摇曳,月儿圆圆缺缺的岁月里,充满了等待的苦涩、团聚的欢乐。
四、社团报告会文学社团的社长以墙报或社刊的形成汇报文学社活动成果。汇报要求:(1)条理清楚,分享成果。(2)展示集体智慧。(3)总结交流活动经验。【设计意图】通过社长汇报,让大家深入理解墙报的策划意图、社刊的创意,分享社团活动成果,展示集体智慧,增强大家的参与热情。同时总结汇报活动经验,让每一个同学都知晓墙报的制作过程、社刊的出刊程序,有利于墙报、社刊的长久发展。五、活动结语师:“文学部落”真是美不胜收!每一朵花都散发着芬芳,每一位同学都发挥了聪明才智,每一个节目都凝聚着集体的智慧!同学们的表现非常精彩!走进“文学部落”,这里是起跑线,让我们从这里出发,走进文学的腹地!去博览群书,与高尚的人对话;去用心创作,与内在的自己交流;去精心办刊,与各样的人合作。让这些行为成为你的习惯,像滴滴露水滋养你的成长!
做学习的主人老师们,同学们:大家好,今天我演讲的题目是“做学习的主人”!同学们,大夫的职责是救去世扶伤,老师的职责是教书育人,那学生的职责呢?对,勤劳学习!是啊,每一小我私家都有本身的职责。作为学生的你们也不破例,学的职责便是学习。学习便是学生的根木任务,自打你走进校园的那一刻起,你就负担起学习的任务。由于只有学习才气使你变的睿智,唯有知识才气使你日益壮大。你们是国家的将来和盼望。你们的自身本质直接决定着故国的运气,于是我们的先进梁齐超就颁发了“少年智,则国智,少年富,则国富,少年强,则国强”的“少年中国说”。以是学习对如今的你们来说,责无旁待!怎样学习呢?首先要主动学习,自主学习,做学习的主人!学习的主体是自己。
各位老师、同学们:大家早上好!走过炎热的夏天,度过愉快的暑假,我们又满怀激动的心情迎来了新的学年。新的学年,我们迎来了23名新教师和1000余名七年级新生,他们的到来进一步壮大了我们的队伍,为学校的进一步发展提供了新鲜的血液和强大的动力,为此让我们以热烈的掌声对他们的到来表示热烈的欢迎!过去的一个学年,我们全校师生戮力同心,奋力拼搏,锐意进取,改革创新,在学校管理、教育教学、校园文化建设等方面取得了可喜的成绩,特别是我校利用暑期对教学区的楼宇进行了加固改造,改善了办学条件,让校园变得更美丽、更安全。这些成绩的取得,凝聚着每位教职员工的辛勤耕耘和无私奉献,汇聚着全体同学的勤奋好学和自强不息。在此,我代表学校向一学年来兢兢业业、努力工作、勤奋学习的老师和同学们表示衷心的感谢!老师们,因为有缘,我们相聚实中;因为有份,我们奉献实中。新的学年里,让我们自觉学习现代教育理论,积极投身教学改革,提高教学效率;继续发扬爱生敬业、甘于奉献的优良作风,静心教书,潜心育人,以纯洁的心灵塑造学生的灵魂,以健康的人格魅力带动学生的品格养成,营造我校和谐健康,洋溢着人文色彩的人际氛围,努力实践教育促进人的发展的崇高目标。
敬爱的老师们,亲爱的同学们,大家早上好。今天我国旗下讲话的主题只有一个字,那就是“爱”: 在当今这个世态炎凉的社会上,“爱”这个字似乎已经消失的无影无踪。 但是,依然有那么一群人在默默无声地将爱一份一份的传递下去。他们就是博爱学校的老师们。一个又一个孩子在那里得到了恢复:自闭症的孩子变得活泼起来,智力有限的孩子也在慢慢的痊愈…… 记得暑假中,我去了博爱学校陪他们上课。那些孩子们虽然有一些小小的调皮,但是却非常听话。 令我影象最深的,是一个小女孩,在体育课上,我陪着她一起抛接球,她马上就对我产生了好感。上楼梯的时候还用她的小手紧紧地拉着我的手。在他们身上,我看到了最原始的本性。
欢庆愉快的寒假过去,新的学期已经来到,那么XX年春季开学第一周国旗下讲话发言稿怎么写,以下是小编精心整理的相关内容,希望对大家有所帮助!XX年春季开学第一周国旗下讲话发言稿 尊敬的各位老师,亲爱的同学们:大家上午好!春回大地,万物复苏,到处洋溢着春天的气息。今天,我们在这里隆重举行兴洪中学XX年春季开学典礼,首先我向辛勤工作的全体教职员工表示崇高的敬意和衷心的感谢!向努力学习并取得进步的同学们表示真诚的祝贺!过去的一学期里,我们辛勤工作、刻苦学习,收获了累累硕果:高三模拟考试,我们能够冲刺本科的人数远远大于教育局下达给我们学校的指标,元月份揭晓的音乐、美术专业考试,我们兴洪中学的民本过关百分率、高分人数都处于泗洪领先地位,期末考试很多年级的学科均分仅次于县中,或者名列前茅,新高一年级一大批学生在中考分数滞后情况下,通过一个学期的努力,挤入了全县500名、1000名的行列,我们在宿迁市日语基地申报答辩中取得了第一名的好成绩,日语教研组被评为“宿迁市优秀教研组”,高中数学、英语备课组被评为“宿迁市优秀备课组”,冯万娟老师被评为宿迁市优秀备课组长,所有这些都受到了教育主管部门的肯定,事实充分证明我们兴洪中学的老师是优秀的,我们兴洪中学的同学们是努力的。
活动准备: 1、经验准备:幼儿有看图列组成式的经验,学习过6以内各数的加减和7的组成。 2、物质准备: , ——教具:图片一张(上面画7只猴子,其中1只小猴,6只大猴;2只猴子在树上,5只猴子在草地上;3只猴子在吃香蕉,4只在吃苹果。) ——学具:《幼儿用书》(P11、12、13页),幼儿人手一支笔。活动过程: 1、看猴子去。 ——教师:还记得《7只小猴去旅行》的故事吗?小猴们旅行回来了,我们去看看它们吧。 ——教师(出示图片):小猴在哪里?它们都在干什么? ——请幼儿说一说每个小猴子的位置,以及它们正在做什么?如:1只小猴子,6只大猴子………
“学习静、用餐静、公共场合静;语言雅、举止雅、仪表雅”不用我说,大家都应该知道,这就是我们每天在学校听老师说的最多的,要求我们做的最多的“三静三雅”了。只要一提到三静三雅,同学们一定会滚瓜烂熟的背下来,可是,光会背可不行,大家嘴上背的可顺流了,可是一到做的时候,许多同学早就把三静三雅给抛到九霄云外了吧。就像第一条说的“学习静”,同学们在有老师的教室里,会懂得自觉学习,不会吵吵闹闹的。可是,在老师不在的时候,课前做准备,等老师来的时候,一部分的同学好像和这条“学习静”的条例对着干,老师没来之前,教室里吵吵闹闹的,学习好的、自觉的同学,在教室里复习功课都被打扰了。而那些不遵守纪律的同学,还会专门找个同学在门口“放风”呢。放风的同学一见到老师来了,立即大喊一声:“老师来啦!”像阵风似的,呼啦一下,走出座位的同学,回到了座位上;说话的同学,立马闭上了嘴巴。一个班的同学都做得直直的,连根针掉到地上都能听见。老师到了教室后,见到同学们各个都很遵守纪律,还会表扬表扬同学们呢!而那些把一切都看在眼里的同学,却又不敢说出来。所以说,我们“学习静”这一条做得还不够好呢。
它位于三角函数与数学变换的结合点上,能较好反应三角函数及变换之间的内在联系和相互转换,本节课内容的地位体现在它的基础性上。作用体现在它的工具性上。前面学生已经掌握了两角和与差的正弦、余弦、正切公式以及二倍角公式,并能通过这些公式进行求值、化简、证明,虽然学生已经具备了一定的推理、运算能力,但在数学的应用意识与应用能力方面尚需进一步培养.课程目标1.能用二倍角公式推导出半角公式,体会三角恒等变换的基本思想方法,以及进行简单的应用. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换的技巧进行三角函数式的化简、求值以及证明,进而进行简单的应用. 数学学科素养1.逻辑推理: 三角恒等式的证明; 2.数据分析:三角函数式的化简; 3.数学运算:三角函数式的求值.
四、小结1.知识:如何采用两角和或差的正余弦公式进行合角,借助三角函数的相关性质求值.其中三角函数最值问题是对三角函数的概念、图像和性质,以及诱导公式、同角三角函数基本关系、和(差)角公式的综合应用,也是函数思想的具体体现. 如何科学的把实际问题转化成数学问题,如何选择自变量建立数学关系式;求解三角函数在某一区间的最值问题.2.思想:本节课通过由特殊到一般方式把关系式 化成 的形式,可以很好地培养学生探究、归纳、类比的能力. 通过探究如何选择自变量建立数学关系式,可以很好地培养学生分析问题、解决问题的能力和应用意识,进一步培养学生的建模意识.五、作业1. 课时练 2. 预习下节课内容学生根据课堂学习,自主总结知识要点,及运用的思想方法。注意总结自己在学习中的易错点;
(一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
第二学期开学安全第一课(国旗下讲话)老师同学们:大家好!今天是新学期的第一天,我们怀着激动的心情,迈着矫健的步伐回到学校,迎接新学期的挑战。今天我将利用一节课的时间围绕“安全”这个话题和大家谈起。因为安全是我们快乐学习与生活的前提,是我们每一个人的心愿。在此,我向全体同学提出以下建议,让我们行动起来,为安全而努力,让安全与我们同行。同学们,生命只有一次、健康不能重来。生命安全就掌握在我们自己手中。安全不仅关系我们个人、更关系到我们身后的家庭、学校、整个社会和整个国家。珍爱生命,增强安全意识,让快乐与幸福伴随我们的童年。今天我与同学们一起交流几个方面的安全问题。一、交通安全1、要遵守交通法规,基本常识有:行人靠右行,不闯红灯,不跨越护栏,横穿公路时要左顾右盼看是否有车辆经过,不脱把骑车,不骑“英雄”车,不跳车,不扒车。2、十二周岁以下的学生不准骑自行车。3、不乘坐黑车,因为黑车是“三无”车,有诸多不安全系数,出了安全问题,费用难以保证,更谈不上赔偿。