
根据题意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公顷),18%x=18%×1000=180(公顷),34%x=34%×1000=340(公顷).答:玉米种了340公顷,高粱种了180公顷,水稻种了480公顷.方法总结:从扇形统计图中获取正确的信息是解题的关键.语文老师对班上学生的课外阅读情况做了调查,并请数学老师制作了如图所示的统计图.(1)哪种书籍最受欢迎?(2)哪两种书籍受欢迎程度差不多?(3)图中扇形分别表示什么?(4)图中的各个百分比如何得到?所有的百分比之和是多少?解:(1)科幻书籍最受欢迎,可从扇形的大小或图中百分比的大小得出.(2)科普书籍和武侠书籍受欢迎程度差不多,可从图中扇形大小或图中所标百分比的大小得出.(3)图中扇形分别代表了最喜欢某种书籍的人数占全班人数的百分比.(4)用最喜欢某种书籍的人数比全班的总人数即可得各个百分比,所有的百分比之和为1.方法总结:由扇形统计图获取信息时,一定要明确各个项目和它们所占圆面的百分比.

解析:根据“全等三角形的对应角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形内角和定理来求∠ACB的度数.解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法总结:本题将三角形内角和与全等三角形的性质综合考查,解答问题时要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.三、板书设计1.全等形与全等三角形的概念:能够完全重合的图形叫做全等形;能够完全重合的三角形叫做全等三角形.2.全等三角形的性质:全等三角形的对应角、对应线段相等.首先展示全等形的图片,激发学生兴趣,从图中总结全等形和全等三角形的概念.最后总结全等三角形的性质,通过练习来理解全等三角形的性质并渗透符号语言推理.通过实例熟悉运用全等三角形的性质解决一些简单的实际问题

解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.

1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积

(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.

(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4

【教学目标】知识目标:⑴ 理解任意角的三角函数的定义及定义域;⑵ 理解三角函数在各象限的正负号;⑶掌握界限角的三角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.【教学重点】⑴ 任意角的三角函数的概念;⑵ 三角函数在各象限的符号;⑶特殊角的三角函数值.【教学难点】任意角的三角函数值符号的确定.【教学设计】(1)在知识回顾中推广得到新知识;(2)数形结合探求三角函数的定义域;(3)利用定义认识各象限角三角函数的正负号;(4)数形结合认识界限角的三角函数值;(5)问题引领,师生互动.在问题的思考和交流中,提升能力.

4.教学比例的各部分名称这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力,师生的双边关系亦实现从扶到放的转变。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。5.教学比例的基本性质观察80:2=200:5中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果,然后引导他们回答:2:3 = 0.4:0.6。两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,探讨写分数形式,归纳“交叉相乘”积相等。小结:比例的基本性质可以检验组成的比例对不对?并提问:4:9=5:10成立吗?比例的基本性质是本课的第二个重点。为了突出重点,我引导学生通过计算几个比例式的内项积和外项积,也从特殊到一般的推理方式,引导学生发现规律,总结概括性质。同时也渗透了实践第一的观点。

师:这是一种较为简便、应用广泛的方法,但有时候也要具体问题具体分析,做题时要合理灵活地选择计算方法。《研究学生如何学比研究教师如何教更重要。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的教学基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学都有了足够的掌握。有了上面的分析基础,我觉得把研究新知识的权力教给学生,是完全可以的。》4、质疑与反思。师:对于这些方法,尽管大家的思维角度不尽相同,但是基本的想法是相同的,想一想我们是怎样解决问题的?生:用学过的倒数、商不变的性质解决的。师:对。用一句话概括就是运用旧知识解决新新问题。这是一种很重要的学习方法。5、实践体验练习巩固。

一.说教材。我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证,引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。根据刚才对教材的理解,本节课的教学目标是:1、理解分数除法的意义与整数除法的意义相同。2.理解分数除以整数的计算原理,掌握计算方法,并能正确的进行计算。

思想观念的变革,是一个地区、一项事业兴旺发达的重要决定因素。观念不改变,就难以适应不断发展变化的形势。解放思想永无止境,今天思想解放,不代表明天就思想解放,必须以永不僵化、永不满足、永不懈怠的进取精神大力推进思想解放。从历史上看,东北地区特别是X作为国家重要的工业基地,为支撑新中国工业架构体系作出了突出贡献,有力助推了我国社会主义现代化建设和改革开放进程。

一、大胆解放思想,坚定不移地落实五大发展理念思想观念的变革,是一个地区、一项事业兴旺发达的重要决定因素。观念不改变,就难以适应不断发展变化的形势。解放思想永无止境,今天思想解放,不代表明天就思想解放,必须以永不僵化、永不满足、永不懈怠的进取精神大力推进思想解放。从历史上看,东北地区特别是X作为国家重要的工业基地,为支撑新中国工业架构体系作出了突出贡献,有力助推了我国社会主义现代化建设和改革开放进程

一、鄂州商务工作发展基本情况 鄂州市商务局现有编制28人,借调人员4人,暂未设置贸促会、商业物流联合会和商务执法机构。20**年,鄂州市实现社会消费品零售额336.80亿元,同比增长12.8%,增速居全省第二。新增葛店苏宁云商、大汉风情等12家“小进限”企业;全市外贸进出口总额55686.2万美元,同比增长14.3%。新增外贸出口实绩企业24家,比上年增加12家,出口实绩企业达82家;全年实际利用外资29256万美元。

一、我县食品安全工作基本情况全县现有食品生产企业4户(均获得食品安全市场准入资格),产品涉及4大类15个品种,食品加工小作坊16户;各类食品流通经营户342户(企业14户,个体工商户328户);各类餐饮单位165户(小型餐饮单位125户);餐具消毒包装企业1户;农药、兽药经销点29户,生猪屠宰场、加工点4个;农贸市场1处。近年来,我县食品安全工作在县委、县政府的高度重视和正确领导下,认真贯彻落实《食品安全法》,立足本县实际,科学谋划工作思路,强化组织领导,保障经费投入,在食品安全委员会各成员单位的不懈努力下,全县食品生产经营秩序渐趋规范,食品安全保障水平明显提升,未发生过大的安全事故。

(一)夯实服务体系:建立街道、社区两级退役军人服务站。战略落地,机构先行。建立健全退役军人服务保障体系“让军人成为全社会尊崇职业”至关重要的关键环节,而作为退伍军人与相关职能部门之间最直接的桥梁和纽带,退役军人服务站的设立就是打通政策到退伍军人之间的“最后一公里”。根据省市区有关退役军人服务站建设的文件精神,十里河街道切实按照“有机构、邮编之爱、有人员、有经费、有保障”的“五有”要求,扎实推进退役军人服务体系标准化建设,建立了街道、社区两级退役军人常态化服务机制;在办公场所方面,街道设立了十里河退役军人服务站、退役军人信访接待室、退役军人活动之家;各社区也分别设立了专门服务退役军人的办公空间,为退役军人提供心理疏导、精神抚慰、人文关怀、法律援助和就业安置等服务;

一、基本情况我市现有职业院校15所。其中,驻蚌高职院校2所,省属中职学校3所;市区中职学校6所;县域中职学校4所。市域内中职学校中,国家级改革示范校3所;国家级职业学校5所。中职在校学生近5万人,每年毕业生约1.5万人,就业率达98%以上。近年来,我市职业教育在市级统筹、招生改革、基础能力建设等方面取得了较好的成绩,受到省内外一致好评。20**年,安徽省人民政府将我市作为全省职业教育真抓实干取得明显成效的地市通报表扬。

一、基本情况我市现有职业院校15所。其中,驻蚌高职院校2所,省属中职学校3所;市区中职学校6所;县域中职学校4所。市域内中职学校中,国家级改革示范校3所;国家级职业学校5所。中职在校学生近5万人,每年毕业生约1.5万人,就业率达98%以上。近年来,我市职业教育在市级统筹、招生改革、基础能力建设等方面取得了较好的成绩,受到省内外一致好评。20**年,安徽省人民政府将我市作为全省职业教育真抓实干取得明显成效的地市通报表扬。

对于食物浪费的不良影响,从小的方面来说,浪费是个人的不合理的消费方式,同时也从一个侧面反映了一个人的人生观和价值观的偏颇和瑕疵。毕竟任何资源都是一种劳动的结晶,浪费资源就等于不尊重劳动本身,作为解决温饱的粮食,自然也不例外。这是对个人而言的。一个人对于食物浪费没有一个明确的概念,认为这不是什么值得关注的事情,那么在这一方面他就形成了错误的价值观。

一、问卷基本情况 本次问卷调查共计收到有效问卷xxx份。从企业划型上看,中、小、微型的企业数量比例为xx:xx:xx,小型微型企业占被调查企业总数的xx%,样本结构与我市中小微企业结构基本一致。从行业类别上看,xx个被调查行业均有样本企业数据,其中制造业企业较为集中,其它行业较为分散,制造业样本企业数xxx家,占样本企业总数的xx.x%;从区域分布上看,样本企业全面覆盖我市xx个区及xx开发区。

二是村企发展联合型:社区建设依托企业注资,同时为企业提供服务,实现村企双赢。如:韩店镇西王社区以西王集团为依托,联合开河、小言等村建设社区。企业先期注入资金用于社区启动,村民入住社区后,收回资金归还企业,置换出的土地由企业优先使用,既解决农村社区建设的资金问题,也缓解企业用地紧张问题。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。