提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教部编版语文九年级下册名著导读《儒林外史》讽刺作品的阅读教案

  • 第八周国旗下讲话——《学法、守法与浦外精神》

    第八周国旗下讲话——《学法、守法与浦外精神》

    尊敬的老师,亲爱的同学们:大家早上好。今天我讲话的题目是《学法、守法与浦外精神》,概括的说浦外精神就是不断的精益求精,追求卓越。在这社会大家庭里,我们每个人如何约束自己、规范自己的行为呢?那就是共和国华丽雄伟的大厦下一座坚实、永恒不变的根基——“法”。它使我们每个人明确是非的界限,而这也是共和国公民所应具备的最基本的素质。回首新中国跨越半个世纪的发展历程,以毛泽东为核心的第一代中央领导集体建立了新中国,制定了我国第一部社会主义类型的成文宪法。从此,无数中国人开始认识法律、关心法律。以邓小平为核心第二代领导集体确定了发展社会主义民主、健全社会主义法制的方针,为开创普法工程奠定了坚实的基础。以江泽民为核心的第三代领导集体继往开来,与时俱进,确立了依法治国的基本方略,并将这一方略载入国家根本大法。去年,《中华人民共和国法典》和《中华人民共和国法库》的出版发行反映了我国法制建设的成就,有助于推行实施依法治国的进程。

  • 人教版高中数学选修3排列与排列数教学设计

    人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3正态分布教学设计

    人教版高中数学选修3正态分布教学设计

    3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 人教版高中数学选修3组合与组合数教学设计

    人教版高中数学选修3组合与组合数教学设计

    解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).

  • 人音版小学音乐四年级上中华人民共和国国歌说课稿

    人音版小学音乐四年级上中华人民共和国国歌说课稿

    2)、配乐朗诵,整体感知。要进一步了解国歌就要学习国歌的歌词,因此我以管弦乐《中国人民共和国国歌》为背景音乐有节奏地带领学生有感情地朗读歌词,让学生小组讨论探讨国歌表达的内容,加深学生对国歌的了解,让学生明白国歌的重要意义,加深学生的情感体验。3)、听赏齐唱歌曲《中华人民共和国国歌》。聆听是一切音乐实践活动赖以进行的基础,因此我让学生听赏齐唱歌曲《中华人民共和国国歌》,提出聆听要求:歌曲可以分为几部分?每部分可以划分为几个乐句?说一说为什么要这样划分。分组讨论,再小组汇报。通过这部分的聆听学习,小组讨论,发挥了学生的团结合作能力和学习的主动性,把歌曲划分为两部分,第一部分是引子,第二部分由四个乐句组成。

  • 国企2023年上半年保密工作总结及下步工作计划

    国企2023年上半年保密工作总结及下步工作计划

    同时,在重点区域、部位张贴手机应用软件、AAA小程序等使用保密风险提示语,进一步推进公司保密工作规范化、常态化。保密专员对于保密文件会专人专车到集团公司保密办领取保密文件,并负责做好保密文件的传阅、跟踪落实工作。凡对外向各类政府网站、外部单位报送信息,必须经分管领导审批后方能报送。二、存在问题和下步工作打算近年来,在集团公司的正确领导和公司全体干部职工的高度重视和共同努力下,X公司保密工作得持续加强,未出现泄密事件和不稳定因素。但仍存在一些问题和不足,主要表现在:保密宣传的力度和深度还不够;对新形势下保密工作的认识还有待进一步加强。下一步,我们将进一步建立健全保密工作规章制度,加强业务培训和岗位训练,强化涉密人员保密意识,严格规范涉密人员保密行为,努力提高保密工作软硬件保障水平,坚决杜绝失泄密问题发生,为集团和X公司高质量发展创造良好的条件。

  • 国企2024年上半年保密工作总结及下步工作计划

    国企2024年上半年保密工作总结及下步工作计划

    公司保密领导小组不定期对重点涉密部门人员手机应用软件进行了抽查,未发现有利用微信、qq等应用程序流转涉密文件,无利用小程序拍摄、扫描涉密资料等泄密情况发生。同时,在重点区域、部位张贴手机应用软件、微信小程序等使用保密风险提示语,进一步推进公司保密工作规范化、常态化。保密专员对于保密文件会专人专车到集团公司保密办领取保密文件,并负责做好保密文件的传阅、跟踪落实工作。凡对外向各类政府网站、外部单位报送信息,必须经分管领导审批后方能报送。二、存在问题和下步工作打算近年来,在集团公司的正确领导和公司全体干部职工的高度重视和共同努力下,*公司保密工作得持续加强,未出现泄密事件和不稳定因素。但仍存在一些问题和不足,主要表现在:保密宣传的力度和深度还不够;对新形势下保密工作的认识还有待进一步加强。下一步,我们将进一步建立健全保密工作规章制度,加强业务培训和岗位训练,强化涉密人员保密意识,严格规范涉密人员保密行为,努力提高保密工作软硬件保障水平,坚决杜绝失泄密问题发生,为集团和*公司高质量发展创造良好的条件。

  • 20XX-2023年政工工作个人三年工作总结

    20XX-2023年政工工作个人三年工作总结

    20XX年至2023年,我系统学习了《中国共产D纪律处分条例》《中华人民共和国监察法》等D内法规制度,深入研读了《廉洁自律准则》《纪律处分条例》《新形势下D内政治生活的若干准则》《D内监督条例》等D纪D规。每天利用业余时间,看阅D报、D刊,学习有关文件、时事政治和业务知识,记录了大量学习笔记,撰写了多篇心得体会。通过学习,有效提升了履职尽责能力。工作期间我能够主动协助纪检委员对D风廉政建设工作落实的监督,引导广大D员积极参加警示教育,严格执行D员领导干部廉洁从政的有关规定。近三年,公司D总支多次召开会议,全面传达学习上级D风廉政建设决定,分析D风廉政建设形势,部署D风廉政建设工作,对公司D风廉政建设和反腐败工作进行了责任分工,统筹推动D风廉政建设各项工作落实。将D风廉政教育内容作为D员组织生活、领导班子组织生活会的内容,推动D风廉政建设有效落实。

  • 2021-2023年政工工作个人三年工作总结

    2021-2023年政工工作个人三年工作总结

    2021年至2023年,我系统学习了《中国共产D纪律处分条例》《中华人民共和国监察法》等D内法规制度,深入研读了《廉洁自律准则》《纪律处分条例》《新形势下D内政治生活的若干准则》《D内监督条例》等D纪D规。每天利用业余时间,看阅D报、D刊,学习有关文件、时事政治和业务知识,记录了大量学习笔记,撰写了多篇心得体会。通过学习,有效提升了履职尽责能力。工作期间我能够主动协助纪检委员对D风廉政建设工作落实的监督,引导广大D员积极参加警示教育,严格执行D员领导干部廉洁从政的有关规定。近三年,公司D总支多次召开会议,全面传达学习上级D风廉政建设决定,分析D风廉政建设形势,部署D风廉政建设工作,对公司D风廉政建设和反腐败工作进行了责任分工,统筹推动D风廉政建设各项工作落实。将D风廉政教育内容作为D员组织生活、领导班子组织生活会的内容,推动D风廉政建设有效落实。

  • 人教版高中生物必修2人类遗传病说课稿

    人教版高中生物必修2人类遗传病说课稿

    一、人类遗传病1.概念2.分类(1)单基因遗传病(2)多基因遗传病(3)染色体异常遗传病①原因②类型3遗传病的特点4.遗传病对人类的危害八、说布置作业在作业的布置中,我严格遵循“重质量、轻负担”的指导思想。第一题主要是为了帮助学生及时纠正原有的对知识的错误理解或片面认识,培养学生的解题技巧和技能。所以我选用了该题。同时想借助该题培养学生对问题的科学的思维方法和探究的精神。帮助学生提高对信息技术运用的熟练程度,发展学生的信息素养。附作业:1、连线题,请同学们连线指出下列遗传各属于何种类型?(1)苯丙酮尿病 A、单基因遗传病(2)21三体综合征(3)抗维生素D佝偻病 B、多基因遗传病(4)软骨发育不全(5)青少年型糖尿病 C、常染色体病2、以生物小组为单位进行人类遗传病的调查。

  • 人教版高中政治必修2对人民负责说课稿

    人教版高中政治必修2对人民负责说课稿

    在学生活动的基础上,教师总结归纳:要坚持从群众中来到群众中去的工作方法。要求:政府要通过各种途径,利用各种群众组织、社会团体广泛收集群众意见和建议,认真对待群众的来信来访。还要为群众诚心诚意办实事,尽心竭力解难事,坚持不懈。通过合作探究,以此来培养学生的分析能力,探究能力以及透过现象看本质的能力,培养学生获取信息的能力,自主学习的能力以及全面看问题的能力,再结合教师的讲授,给学生一种茅塞顿开的感觉。环节四 回归生活 提升情感我将引导学生阅读课本,通过设置活动探究课,结合生活实际从时效,便利,实效等方面请学生评述公民求助或投诉的四种方式的特点和优点。在这一过程中,我还会用多媒体展示常用的热线电话,政府网站上有关信访、政务公开及其他便民利民的栏目,丰富课堂资源。让学生阅读课本,自行归纳知识点,有助于培养学生自主学习能力。

  • 教师教研工作计划

    教师教研工作计划

    ⑴内容与结构:每一单元除了关注阅读、写作、听力、视听说等语言实践活动,还关注语言知识、情感态度、文化意识和学习策略等。其中,教材加强了文化意识的提高和学生学习策略的培养,是相较于以前教材很大的不同。  ⑵教材特点与重难点:  首先突出学习者的发展,包括注重学习策略的培养和使用;注重提高学生的语言认知能力;为教师和学生提供个性化的选择;其次努力提高学生用英语进行思维和表达的能力。具体为:为学生提供更多的体验真实语言的机会;精心设计教学活动,使学生看到明确的目标和明确的成果;为学生发展语言运用能力提供详尽的语言支持;重视复现。

  • 教师教育实习工作计划

    教师教育实习工作计划

    知识与技能:  1、让学生联系已有的知识经验,经历将实际问题抽象成式与方程的过程;经历探索和理解分数的意义、性质和分数加、减法计算方法的过程,形成必要的计算技能。  2、让学生在用数对确定位置,认识圆的特征以及探索和掌握圆的周长、面积公式的过程中,获得有关的基础知识和相应的基本技能。  3、经历用复式折线统计图表示相关数据的过程,能进行简单的分析和交流;能按要求完成相关的折线统计图。

  • 素质教育教师工作计划

    素质教育教师工作计划

    二、全面加强班级德育工作  1、德育工作要突出“三义、“五心”“共同”“五爱”教育,培养学生的优良品质。  2、要做到“两个寓于”“三个坚持”及“四个”原则,“五个结合”,全面提高学生思想道德素质,教育学生做一个全面发展,德、智、体、美、劳五育并举的合格学生。  3、要围绕“小学生规范养成教育”和“学困生转化策略”这两个主要德育研究课题,积极开展各类研究活动。

  • 学校教师教研工作计划

    学校教师教研工作计划

    一、指导思想  素质教育的发展,其根本目的是培养学生的全面发展,提高学生的创新思维及创造能力。其核心就是创新能力、实际的动手能力和观察能力等科学素质的培养。由于科学课程承担着培养小学生科学素养的重任,科学课程的内容和课程结构都与学生的生活和经验紧密结合,为学生的终身发展提供必备的基础知识、基本技能和良好的情感发展与价值观。科学课程以创新精神和实践能力为核心,重视发展学生搜集处理信息的能力、自主获取新知识的能力、分析解决问题的能力、交流与合作的能力,其地位在整个小学教育中是越来越重要。因而,学好科学这一课程也显得越来越重要。

  • 教师教学工作考核制度

    教师教学工作考核制度

    1、教案检查制度:  为了消除无教案上课现象,年级部每月进行一次教案检查登记,根据教案数量考核课时津贴,根据备课数量和质量考核当月教案得分。平时考核按10分制。根据备课格式的规范性,备课内容、板面及书写综合评分,上等记为9-10分,中等记为5-8分,下等在5分以下,上等人数不得超过30%。教务处或教研室开学和期末要对教师教案进行检查,并评选出本期优秀教案。  2、作业检查制度:  年级部每月对任课教师的作业布置和批改情况作检查登记,并评定当月得分,按10分制记录。作业率在10%以下记1分,作业率在10%至20%记2分依此类推。但批改不认真的要在基本分上酌情扣分,作业率=作文一次按两次统计。体育音乐课允许无作业,此项评分将根据两操一课活动的开展情况,平时的各种活动开展情况和成绩记录、资料收集等项目进行考核,学期末由年级部和教务处考核评分。

上一页123...458459460461462463464465466467468469下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。