导语:演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。 演讲稿是进行演讲的依据,是对演讲内容和形式的规范和提示,它体现着演讲的目的和手段。以下是小编为您搜集整理提供到的范文,希望对您有所帮助,欢迎阅读参考学习!普通话,请从我做起普通话是每个人都应该会说的,是一种以北京语言为标准音,以北方方言为基础方言,以典范的现代白话文著作为语法规范的一种通用的语言形式。普通话是我们学习说话的第一步,也是做一个文明人的第一步,要是一个人连最基本的普通话都不会说,他还怎么去和别人交流呢?普通话已深入到我们日常的学习和生活中,无论我们在干什么,普通话都回荡在我们周围的每一个角落。有人可能会问,“为什么要说普通话呢?”因为中国是一个多民族、多语言、多方言的国家,根据著名的语言学家周光有先生讲,我国56个民族共有80多种彼此不同的语言和地区方言,而我们每一个人又不可能一辈子都生活在同一个地方,固步自封,不去见识外面的世界吧,所以一旦我们身处异乡,便会遇到语言方面的障碍,不能与人沟通、交流。这时,如果我们都会说一种共同的语言——普通话,那么,就不用再为语言不通而急得满头大汗、不知所措了。
又是一年开学季,那么XX年小学开学国旗下讲话稿怎么写,以下是小编精心整理的相关内容,希望对大家有所帮助!XX年小学开学国旗下讲话稿 尊敬的各位老师、亲爱的同学们:大家好!天朗气清,惠风和畅,伴着胜利的喜悦,怀着美好的憧憬,我们共同迎来了充满希望的新学期。值此新春开学之际,我代表校委会向全体师生致以新春最诚挚的问候与祝福,祝各位老师工作顺利、身体健康,祝同学们快乐学习、健康成长!过去的一年,我们扎实迈步,奋力向前,团结协作,硕果累累:教学上,工作大胆创新:学案教学,同课异构,月考之星等活动,激发了师生斗志,提高了教学成绩;微课大赛、基本功大赛、感动巨中教师评选等活动,磨练、雕琢、打造了一批巨中名师,提高了老师们的社会知名度;与巨鹿职教中心联合开设普职融通班,投资建设了两个互联网+数学自习室,开设了美术、播音、书法、音乐、体育专长兴趣班,让每个有梦想的孩子都能闪亮发光;发起组建了“六校联盟”,校际合作,资源共享,横向比较,合作共赢,极大提升了我校在全市的社会影响力。
尊敬的老师、亲爱的同学:你们好!蓝天下,迎着初升的晨曦,我们在这里举行庄严而隆重的升国旗仪式。再过几天就是10月1日,中华人民共和国成立xx周年纪念日。我们祖国走过了58个年头的辉煌道路,回顾历史,每一个中国人都会为此感到骄傲与自豪。滔滔的长江,滚滚的黄河,连绵不断的山脉,都属于我们伟大的祖国。祖国的山川雄奇,祖国的河水秀逸,祖国的胸怀无比广阔。曾经,当侵略者的铁蹄践踏我们美丽山河的时候,每一个有良知的中国人脸上流着泪,心中淌着血。为了心中神圣不可侵犯的祖国,他们在黑暗中摸索,在屈辱中抗争。
XX小学国旗下讲话稿大全: 敬爱的老师,亲爱的同学们:大家早上好!同学们肯定知道这句话:播种思想,收获行为;播种行为,收获习惯;播种习惯,收获性格;播种性格,收获命运。这32个字,告诉我们的是,思想决定行为,行为决定习惯,习惯决定性格,性格决定命运。而性格的形成,就在生活的点点滴滴。同学们现在正处于长身体,长知识的黄金期,这也是你们性格形成的黄金期,毫不夸张地说,现在养成的一些好的行为习惯可使你们受益终生。某公司招聘一职员,最后一位其貌不扬的应聘者被公司选中。很多人不服,就去问老板。老板说,他之所以被选中,因为他带来了很多“介绍信”。老板说的介绍信是指:他捡起了老板故意放在地板上的一本旧书,表明他细心敬业;他为进房间的一位残疾人起身让座,表明他懂礼貌;他注视着老板回答提出的问题,表明他尊重他人。如果你是老板,把工作交给这样的人,还有什么不放心的呢?很多同学很重视学习,可效果总不好,原因何在呢?就是忽视了细微之处。所以说,道理简单,听着容易,实践起来就不那么容易了。
小学元旦国旗下讲话稿XX学校今天再一次举行隆重的升国旗仪式。严寒的冬季中,光辉灿烂的XX年将要过去,充满希望和挑战的XX1年即将来临。 回首往事,XX年,我们勤奋学习,努力拼搏、开拓创新。 XX年即将过去,XX年将要到来,虽然我们无法阻拦时间的流逝,但是我们可以主宰自己的未来。展望未来前景灿烂,我们豪情满怀。 XX年,我们将用微笑共同敞开一扇心灵之窗,放飞希望,去寻觅我们的理想。XX年,让我们用行动共同挽起友爱的臂膀,让明天来倾听我们爱心旋律的唱响。 走进新年,走进蓬勃的希望,每一颗青春的心都焕发出缤纷的色彩 。走进新年,走进时尚的动感地带,世界在我们眼前灿烂地舒展开来。 阳光灿烂,那是新年绚丽的色彩。 歌声悠扬,这歌声是我们对伟大祖国的深情祝福,舞姿优美,这舞蹈是我们对家乡、对学校繁荣的衷心祝愿。
故宫——旧时叫紫禁城,是明、清两代的皇宫,是我国现存的最大最完善的宫殿建筑群。 天坛——明、清两代封建皇帝祭天祈求丰收的地方。主要建筑有祈年殿、回音壁等。 颐和园——明清皇家园林。主体是万寿山和昆明湖。 人民大会堂——是全国人大代表开会的地方,能容纳1万多人,1957年建成的。
【设计意图】本环节引导学生走进文本,通过分析千里马的形象,勾连写作背景来了解文章寓意。从而更加深入地理解作者的思想感情。五、总结存储1.教师总结《马说》是经典名篇,文章篇幅短小,仅151字,言简意赅,但引人深思,是“神完气足”之作。韩愈“不平则鸣”的呐喊,是对社会现实的反思,也是一种对于人的生存状态的关怀,是中华优秀传统文化中一笔宝贵的精神财富。2.布置作业在我国封建社会,人才一旦没有得到统治者的赏识,就会被埋没,甚至终生不能施展抱负。我们生活在“海阔凭鱼跃,天高任鸟飞”的时代,只要你有才就一定能有所作为。“千里之行,始于足下。”让我们从现在开始练就本领,以备“千里之行”。课下请同学们以《世有千里马,然后有伯乐》为题,写一篇不少于600字的随笔。
一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
教学要求:1、结合生活中的具体情境,通过“数铅笔”等活动,经历从具体情境中抽象出数的模型的过程;会数、会读、会写100以内的数;在具体情境中把握数的相对大小关系;能够运用数进行表达和交流,体会数与日常生活的密切联系。 2、结合生活情境,学生将经历从具体情境中抽象出加减法算式的过程,进一步体会加减法的意义;探索并掌握100以内加减法和连加、连减、加减混合的计算方法,并能正确计算;能根据具体问题,估计运算的结果;初步学会应用加减法解决生活中的简单问题,感受加减法与日常生活的密切联系。3、通过购物活动,结合生活经验,认识元、角、分及其相互关系,认识各种面额的人民币;结合购物情境进行简单计算,解决简单的实际问题。
方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计1.三角形按边分类:有两边相等的三角形叫做等腰三角形,三边都相等的三角形是等边三角形,三边互不相等的三角形是不等边三角形.2.三角形中三边之间的关系:三角形任意两边之和大于第三边,三角形任意两边之差小于第三边.本节课让学生经历一个探究解决问题的过程,抓住“任意的三条线段能不能围成一个三角形”引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的能围成,有的不能围成,由学生自己找出原因,为什么能?为什么不能?初步感知三条边之间的关系,重点研究“能围成三角形的三条边之间到底有什么关系”.通过观察、验证、再操作,最终发现三角形任意两边之和大于第三边这一结论.这样教学符合学生的认知特点,既增加了学习兴趣,又增强了学生的动手能力
方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n边形的一个顶点可以作(n-3)条对角线,把多边形分成(n-2)个三角形,所以,要使一个n边形木架不变形,至少需要(n-3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.三、板书设计1.边边边:三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.2.三角形的稳定性本节课从操作探究活动入手,有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边边边”掌握较好,达到了教学的预期目的.存在的问题是少数学生在辅助线的构造上感到困难,不知道如何添加合理的辅助线,还需要在今后的教学中进一步加强巩固和训练
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)设AE与DG相交于M,AE与CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板书设计1.边角边:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.两边和其中一边的对角对应相等的两个三角形不一定全等.2.全等三角形判定与性质的综合运用本节课从操作探究入手,具有较强的操作性和直观性,有利于学生从直观上积累感性认识,从而有效地激发了学生的学习积极性和探究热情,提高了课堂的教学效率,促进了学生对新知识的理解和掌握.从课堂教学的情况来看,学生对“边角边”掌握较好,但在探究三角形的大小、形状时不会正确分类,需要在今后的教学和作业中进一步加强分类思想的巩固和训练
1.理解并掌握三角形全等的判定方法——“角边角”“角角边”;(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(难点) 一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:全等三角形判定定理“ASA”如图,AD∥BC,BE∥DF,AE=CF,试说明:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 构造直角三角形解决面积问题在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面积.解析:过点A作AD⊥BC于点D,根据勾股定理求出BD、AD的长,再根据解直角三角形求出CD的长,最后根据三角形的面积公式解答即可.解:过点A作AD⊥BC于点D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。