知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
一、教材分析:本节课选自北京师范大学教育出版社七年级上册第五章第三节,是学生学习一元一次方程的含义,并掌握了解法后,通过分析图形问题中的数量关系,建立一元一次方程并用之解决实际问题,是学生运用数学知识解决生活中实际问题中的典型素材,可提高学生解决问题的能力,提高学习数学的兴趣,形成学以致用的思想,认识方程运用模型的重要环节。二、学情分析:通过前几节解方程的学习,学生已经掌握了解、列方程的基本方法,在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到从题设条件中找不到所依据的等量关系,或虽能找到等量关系,但不能列出方程这样的问题,因此,在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化。
在采访中,记者了解到,为支持白酒产业链建设,我市相关部门持续优化营商环境,推动项目建设“加速跑”。凤翔区行政审批服务局在华山论剑酒庄项目审批中,探索“容缺受理+告知承诺+联合踏勘”管理办法,为项目开辟绿色审批通道;对西凤酒10万吨优质基酒生产及配套项目实施并联审批、一次办结。除此之外,凤翔区相关部门还组建“项目管家”服务队,为白酒产业链重点项目提供延时服务和节假日预约服务。在陇县,围绕总投资5亿元的陇州酒业万吨白酒生产线建设项目,审批部门为项目配备了“服务员”,公安部门给项目配备了“项目警官”,人社部门给项目配备了“保障员”,在“三员”呵护下,这个项目得以快速推进。一条产业链就是一个新的增长极。白酒产业链的未来方向是绿色环保、智能酿造、品质升级,不断满足消费者对高品质、健康、环保等需求。随着这条产业链的日趋完善,上下游企业逐步“链”上开花,一个极具影响力和带动力的增长极正为宝鸡经济社会高质量发展注入强劲动能。
一是要删去一切可有可无的话,空话、套话,说了没错可是也没用的话,都应该毫不可惜地芟除。二是尽量少引用上级的精神。信息是给领导看的,对上级精神,领导同志是比较清楚的,所以信息中不要“反销”上级的精神,确有必要引用时,也要少而精。三是不要过多地强调某件事的重要意义,因为不说这些意义,领导同志也能领悟到,至多点到而已。四是不用过渡句,硬接硬转。领导同志每天阅读大量文书材料,对文件内容的理解能力很强,所以采取硬接硬转的方法,不仅不会造成理解上困难,而确能收到精简文字之效。五是多用省略句和简称。如“创三优”、“除六害”、“申办奥运”等。2.语序顺当。信息常常是一段成篇,不分段落,而靠内在逻辑衔接,因此语序上要非常讲究。信息语言的顺序,大致分为三种:一是按时间顺序,二是按事物发展的顺序,三是按逻辑顺序,如意义的轻重,事情的大小。不论按哪一种顺序写,一般都要采取“顺叙”的写法,而不采用“倒叙”的写法。
累计共引进高水平教育人才80名。优化办学组织结构。构建5个城乡教育共同体,推进内部资源共享和工作体系对接;创建高中、初中各一个教研创新发展实践基地,加快缩小县域内普通学校之间的办学差距;高质量完成48所“麻雀学校”撤并工作,优化教育资源均衡配置。建强教研人才梯队。完善校长选拔任用制度,拓宽选人用人视野,把德才兼备的教师选拔到校长岗位上。分类分级制订培养规划,构建学科带头人梯级培养体系,建立学校后备干部人才库,积极开展赴外挂职锻炼,形成青蓝相继良好局面。完善考核评价体系。建立退出岗位机制,完善年度考核和差异化绩效考评机制,推动建立乡镇教育促进会争取民间奖教力量。开展教学质量检测,强化结果运用,与年度考核、评先评优、职称晋升等挂钩,发挥正向激励作用。在县委县政府全力支持下,县域内教育日益优质均衡,近日成功入选xx省基础教育高质量发展实验区。
2. 掌握词:五星红旗。国旗。尊敬。3. 能热情、愉快地演唱抒情、欢快风格的歌曲。准备:1. 国旗及各国国旗的图片。2. 歌曲图标:国旗、红日、白云、小朋友敬礼等。过程:1.让幼儿找出我国国旗,激发幼儿的兴趣。出示各国国旗的图片,让幼儿找出我们国家的国旗。2.观察、认识五星红旗,知道五星红旗是我们国家的国旗。国旗是什么颜色的?(红色)上面又什么?(有五角星)有几颗大五角星?几颗小五角星?
2)、配乐朗诵,整体感知。要进一步了解国歌就要学习国歌的歌词,因此我以管弦乐《中国人民共和国国歌》为背景音乐有节奏地带领学生有感情地朗读歌词,让学生小组讨论探讨国歌表达的内容,加深学生对国歌的了解,让学生明白国歌的重要意义,加深学生的情感体验。3)、听赏齐唱歌曲《中华人民共和国国歌》。聆听是一切音乐实践活动赖以进行的基础,因此我让学生听赏齐唱歌曲《中华人民共和国国歌》,提出聆听要求:歌曲可以分为几部分?每部分可以划分为几个乐句?说一说为什么要这样划分。分组讨论,再小组汇报。通过这部分的聆听学习,小组讨论,发挥了学生的团结合作能力和学习的主动性,把歌曲划分为两部分,第一部分是引子,第二部分由四个乐句组成。
一、持续推进环境卫生综合整治工作为持续巩固创城成果,建立卫生长效管理机制,在提高城市卫生整体水平的同时,营造良好的城市居住环境。xx区迅速行动起来,由区创卫办工作人员,开展对全区范围内的沟河塘、老旧小区、背街小巷、城市主次干道保洁精细化、公厕、农贸市场、景区游园等周边环境卫生,以周报方式开展爱国卫生督查工作。工作人员每周采取拍摄照片方式,把每期的督查内容形成问题清单进行反馈和通报,要求各涉创单位一周内整改到位,并上报整改情况。先后共派出先后派出xx余人次,对辖区xx个老旧小区,x个农贸市场、x个沟河塘、xx个建筑工地进行督查,先后发现垃圾点xxx余处。通过区创卫工作群下达整改通报xx次,各办事处社区先后整改xxx余处,有部分问题正在协调整改之中。
现行国有企业用人制度主要是全员劳动合同制和聘任制即以劳动合同形式把企业和个人之间的关系明确下来,并对管理人员和技术人员实行分级聘用。随着市场化的推进,这种制度表现出的缺陷是缺乏竞争性、公开性、公平性。人员的聘用仍是通过主管提名、人事部门考察、组织讨论的方式决定。公开选拔、竞争上岗的方式还没有进一步推行。员工与企业签订劳动合同后,只要没有违反厂纪厂规,都会按时享受相应待遇,稳坐“铁交椅”。同时人员配置机制不规范,因人设岗现象严重,因事配人还不能彻底落实,工作职位与个人能力上的能级对应原则没有充分体现。造成人才缺乏与人才浪费并存人才闲置与用人不当并存。
青年是民族的希望,是国家的栋梁。回首往事,第一次世界大战结束后,参战各国于巴黎签订战胜国条约,中国作为战胜国本应获得权益与地位,帝国主义却将日本非法侵占的山东领土转让给其他国家。这一消息传入国内后,举国震惊,国人愤怒地控诉着一切。北京大学的青年学子义愤填膺,争相,上街游行,高喊还我山东,废除二十一条,拒绝在合约上签字。广大青年奔走城中游行,放火焚烧卖国贼曹汝霖的住宅,给北洋政府施压,为此北洋军阀逮捕了百余名学生,此举更是激起全国人民的怒火,全国青年,工人罢工,在全国人民的怒火下,北洋政府不得不释放关押的学生,并拒绝在条约上签字,史称五四运动。这是一次伟大的胜利,在这场运动中,进步青年的五四精神:爱国,拼搏,与反抗,都值得被永远传唱下去,进步青年们不畏强权的抗争精神推动着社会变革,负担着民族兴旺的重任。
一个国家的繁荣与发展离不 开人才。人才,展开来说就是一个人的才干,一个人的才干就是这个人综合能力的体现。国家的发展离不 开甘于奉献,肯于吃苦的人才。一个国家惟独 人才肯做 任做,一心一意的为国家做奉献,这个人,才干有 所成就;反之,若这个国家的人才放着自己的才华不 去使用,不 为国家做奉献,那么他又和一般人有 什么区别呢?伟大的詹天佑,在 面对外国人的置疑与讥笑,坚持自己带领人去修筑铁路。天天早起晚睡,日复一日,他都不 知道疲乏的坚持,从没有放弃。最终,他最终修筑了 历史上第一个由 中国人修建的铁路,令我们十分自傲,也令外国人十分吃惊,他向外国人证明了 我们的意志和实力。
对我国政治安全、国土安全、军事安全、经济安全、文化安全、社会安全、科技安全、信息安全、生态安全、资源安全、核安全11个领域的国家安全进行了明确的规定,所保护的对象涵盖了国家安全方方面面;既包括军事、政治等传统安全,又包括经济、文化、科技等非传统安全。当前,我国面临着对外维护国家主权、安全、发展利益,对内维护政治安全和社会稳定的双重压力,各种可以预见和难以预见的风险因素明显增多,非传统领域安全日益凸显。新国安法以国家生存和发展安全为最基本前提,把维护国家安全是国家的头等大事,主动适应了我国维护国家安全的新形势新要求,是一部真正意义上的国家安全法。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。