4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
二十年前,我们还是~~学校的学子,在母校的养育下,在老师们的辛勤栽培中,我们一步步的成长为一名名出色的毕业生。回顾那三年的时间,那真是一段既美好又短暂的时光,那是我们共同生活的时光。比起这二十年来,这三年的长度也许遥不可及,但是无论我们在这二十年里经历了多少,这三年,依旧是我们最为美好的记忆!
《花的学校》是一首优美而富有童趣的诗歌,作者用拟人手法,展开了丰富的想象。作者巧妙地从孩子的眼中叙出花儿们的活泼、可爱、美丽、向上,充满了儿童情趣。诗歌的语言和所描绘的情境很能调动学生相关的情感体验,激发他们的学习兴趣,使他们对学习内容产生亲近感。教学中我注重学生的朗读指导,读出花孩子的天真烂漫、活泼可爱、勇敢坚强、活泼向上、童真童趣。同时也注重培养学生的问题意识。课文的想象非常大胆、有趣、合理,可以结合课后练习题让学生进行想象力训练。
参与实践,充分体验1、直观感知,初步认识吨让学生说说自己的体重,请出4个体重大约25千克的同学站在一起。算一算4个学生的体重大约是多少千克。再推算一下40个这样的同学大约重多少千克?讲述:为了简便计算1000千克,我们把1000千克规定为1吨。吨也可以用英文字母“t”表示。2、结合实际,进一步认识吨我们教室里的桌、椅、书本等,你认为用吨做单位合适吗?你认为多少张桌子或者椅子合在一起大约重1吨?学生独立思考;引导学生在小组内展开讨论;小组汇报讨论结果;问:在生活中,你见过哪些物体是用吨做单位的?学生举例。讲述:计量比较重或大宗物品有多重时,通常用吨做单位。练习:1棵白菜重1千克,( )棵白菜重1吨。 1袋大米重100千克,( )袋大米重1吨。 1头奶牛重500千克,( )头奶牛重1吨。 1桶油重200千克,( )桶油重1吨。
教学目标:1、通过观察实物,体会到从不同角度观察物体所看到的形状可能是不同的。2、会辨认简单物体从不同角度观察到的形状,发展空间观念。教学重点:会辨认简单物体从不同角度观察到的形状。教学难点:体会到从不同角度观察到的的形状可能是不同的,发展空间观念。课前准备:实物或图片等教学过程:一、出示玩具汽车,学会观察物体第一步:1、观察玩具汽车,学生分别站在汽车侧面和后面两个不同的方向观察。2、分别把玩具汽车的侧面和后面对着全班,让学生说一说这是谁看到的?3、小结:不同的位置观察同一物时,看到的形状可能是不同的。
导语:假期即将结束,开学就在眼前。调整心理状态,变换作息制度。树立远大梦想,保持坚定志向。勤奋攀登书山,快乐泛游学海。最终学有所成,实现人生美梦。篇一:新年开学的国旗下讲话 尊敬的各位领导,老师、亲爱的同学们:大家上午好!元宵的花灯刚刚谢幕,在这乍暖还寒的时候,我们带着希望和欣喜回到了学校。新年新景新气象,我们也应当有新的思想,新的目标,新的作为。新年里我们首先要正确的认识学习,我们不应该把学习当作负担或苦难,通过学习可以走向充满希望的明天,凭着这一点认识,我们就能乐观地面对学习上的困难。当你正确的认识学习,你就能从学习中找到乐趣,你也就能够学得更好。快乐学习还要善于激发自身的潜能,调动自己的学习积极性。一是目标激励。每一个人在一生中,在不同阶段都会有不同的奋斗目标,目标往往可以激励自己去拼搏,去进取,去追求。我们一定要有自己的理想,有自己的追求,珍惜青春,挥洒汗水,为将来的发展积蓄力量。
老师们、同学们:早上好!今天,我国旗下讲话的主题是《学会感恩》。有这样一个故事。一次,美国前总统罗斯福家失盗,被偷去了许多东西,一位朋友闻讯后,忙写信安慰他,劝他不必太在意。罗斯福给朋友写了一封回信:“亲爱的朋友,谢谢你来信安慰我,我现在很平安。感谢上帝:因为,贼偷去的是我的东西,而没有伤害我的生命;第二,贼只偷去我部分东西,而不是全部;第三,最值得庆幸的是,做贼的是他,而不是我。”对任何一个人来说,失盗绝对是不幸的事,而罗斯福却找出了感恩的三条理由。同学们,在家中,当你吃着可口的饭菜,你是否感恩父母付出的辛勤劳动?当你穿着漂亮暖和的衣服,你是否感恩父母对你的关心?也许有的同学会漠视这些来之不易的东西,父母们每天要在工作岗位上辛苦的工作十几个小时,他们付出了多少汗水?可面对父母语重心长的教诲,我们的孩子却无动于衷,会感到厌烦,甚至无礼地和父母顶撞。
同学们:早上好!今天我讲话的题目是——从小事做起,做一个不平凡的人。我请大家思考以下几个问题:1.学校每年都花费近十万元更新桌凳,如果我们人人爱护桌凳,轻拿轻放,坏了及时送去维修,那么,还需要花费这十万元吗?2.学校每年用于卫生保洁的费用将近十五万元,如果我们人人不乱抛纸屑,地上脏了都能主动打扫干净,那么,这十五万元还需要花费吗?3.为了维持校园的安全秩序,学校花费了大量的人力物力。如果我们人人佩戴胸卡,遵守纪律,不在楼道内追逐打闹,安全有序进出校门,学校还需要花费这么多的人力物力吗?4.校园里的草坪灯、开关板、垃圾桶、消防玻璃、篮球架经常被损坏,草坪树木经常被毁坏,如果我们人人都能爱护它们,这些公物还会经常损坏吗?
敬爱的老师,亲爱的同学们:大家好! 在这个阳光明媚的季节,我们怀着激动的心情,迎来了新学年的 开学典礼。在这里,我代表全校学生,向我们默默耕耘、无私奉献的 老师表示最诚挚的谢意!同时,也向亲爱的同学们表达我最美好的祝 愿:祝大家身体健康、学习进步! 这一学期是我们冲刺的一学期, 从今天开始我们将要迈进充满紧 张、充满汗水,然而又充满理想、充满希望的一学期。在接下来曲折而又艰险的求知途中, 我们不可避免的将遇到挫折 与困难,但我们绝不能让那些微不足道的障碍挡住前进的步伐。感谢 曾经帮助我们的人,教育我们的人。人们常说,态度决定高度,目光决定目标。为了让我们处在一个 良好的学习环境中,纪律是尤为重要的。它是认真学习的首要条件, 也是创造学习气氛的必要因素。我们六年级会继续严格遵守学校的规 章制度,作好模范带头作用,在新学期中,取得最大的进步。
1.认真分析本单位的具体情况,这是制订计划的根据和基础。 2.根据上级的指示精神和本单位的现实情况,确定工作方针、工作任务、工作要求,再据此确定工作的具体办法和措施,确定工作的具体步骤。环环紧扣,付诸实现。 3.根据工作中可能出现的偏差、缺点、障碍、困难,确定如何克服的办法和措施,以免发生问题时,工作陷于被动。 4.根据工作任务的需要,组织并分配力量,明确分工。
一、说教材本单元习作的话题是"国宝熊猫",引导学生根据问题查找信息并尝试学习整合有关信息。熊猫教材编排了三个部分内容,第一部分教材首先提供了关于大熊猫许多小朋友都想了解的三个问题,使得本次习作具有更强的针对性,教材呈现的三个问题,有的指向熊猫的,有的指向熊猫的生活的地方,而熊猫为什么被视为"中国的国宝",则指向熊猫的价值,他们只是问题罗列,是小朋友可能提出问题的一部分,其作用是让学生从这些问题受到启发,打开思路继续提出自己有兴趣的问题,第二部分首先明确了本次习作的任务就是围绕这个话题介绍一下熊猫,为介绍大熊猫奠定了基础。二、说教学目标1、针对教材提出的问题,搜集国宝大熊猫的相关资料信息。2、初步学习整合信息,从不同方面介绍国宝大熊猫。3、走进国宝大熊猫,学习整合信息,从不同方面了解大能猫。三、说教学重难点教学重点∶初步学习整合大熊猫的信息,结合资料,从自己感兴趣的方面介绍国宝大熊猫。教学难点∶利用搜集的信息,按一定的顺序准确地介绍大熊猫。
面对来势汹汹的疫情,从猝不及防到全力阻击,从各自为战到同舟共济,国人或勇毅驰援,或坚守岗位,或宅家不出,我们各自用自己的方式共同抗击疫情。中华民族在灾难的考验中凝聚起的正气磅礴的民族精神,百折不挠的民族品格,万众一心的民族情怀定格为无数震撼心灵的画面,砥砺国人奋力前行。 每天,我宅居在家,却和世界息息相通:单位群里天天打卡汇报健康,我打卡之后总会看一看群里那些熟悉的名字,心里莫名的有一种别后无恙各自安好的喜悦;学校领导天天上门查询问候,在我登记健康的时候,我们总会微微一笑,似乎放下了千斤重担;亲朋好友不时微信问候,我们的话题不再只是家长里短,还有武汉加油,中国挺住,我们一定赢……生平第一次,我真实地体会到:无数的人们,无穷的远方,都与我有关。
2、学习与同伴友好交往、合作游戏的方法。3、培养幼儿的动手操作能力、迁移能力和逆向思维。活动准备: 1—10数字一套;录音带、录音机;幼儿学具: 1—10的纸牌。活动预设:1、游戏《拍手问答》复习5以内的相邻数。教师边拍手边问,幼儿边拍手边回答。如教师问:小朋友,我问你,3的朋友是几和几?幼儿回答:x老师,告诉你,3的朋友是2和4。(可请个别或集体回答)2、游戏《认邻居》:请若干幼儿自选楼房居住,并认识自己的邻居。学习6的相邻数。知道其与前后数的关系。3、游戏:纸牌乐,两个幼儿为一组。游戏开始,把1—10的纸牌放在桌面上,两个幼儿猜“剪刀石头布”,赢幼儿先取一张纸牌,输的幼儿找出它的相邻数。游戏再次进行,教师巡回指导。
2、理解交换规律,懂得运用互换规律列出另一道算式。3、积极探索数学活动,乐于讲述探索结果。活动准备:1、教具:城堡图一副(分为三层,每一层分别有表示7的加法的三副图,用纸覆盖)、水果单一张。2、学具:城堡图人手一份、水果单人手一张。活动重点:看图学习7的加法活动难点:能根据不同的画面进行讲述,并列出相应的算式活动过程:一、开火车:复习7的组成师:城堡王国的国王邀请我们去他的国家玩,你们愿意吗?那让我们快点乘上7次列车(出示数字7)出发吧。师:嘿嘿,我的火车X(1)点开,你的火车X 点开?幼:嘿嘿,我的火车X(1)点开,我的火车X(6)点开。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。