2、学习与同伴友好交往、合作游戏的方法。3、培养幼儿的动手操作能力、迁移能力和逆向思维。活动准备: 1—10数字一套;录音带、录音机;幼儿学具: 1—10的纸牌。活动预设:1、游戏《拍手问答》复习5以内的相邻数。教师边拍手边问,幼儿边拍手边回答。如教师问:小朋友,我问你,3的朋友是几和几?幼儿回答:x老师,告诉你,3的朋友是2和4。(可请个别或集体回答)2、游戏《认邻居》:请若干幼儿自选楼房居住,并认识自己的邻居。学习6的相邻数。知道其与前后数的关系。3、游戏:纸牌乐,两个幼儿为一组。游戏开始,把1—10的纸牌放在桌面上,两个幼儿猜“剪刀石头布”,赢幼儿先取一张纸牌,输的幼儿找出它的相邻数。游戏再次进行,教师巡回指导。
二、说教材这是一篇非常优美的文章,作者以清新流畅的笔触,勾画出甜美纯净的儿童世界。顽强活泼而且具有丰富细腻想象力的孩子,在看到六月里雷电交作、风雨交加之后青草地上冒出的花儿时,就在自己想像的天空里自由驰骋起来。他把未冒出地面得花儿想象成地下学校上学的孩子们,在墙角旮旯冒出来的零星小花是犯错误被罚站的小孩儿,大雨来时,花儿们便衣着鲜艳地冲出学校度假了,而花儿们这么急切地生长是因为要回家找它们的妈妈。作者巧妙地从孩子的眼中叙出花儿们的活泼、可爱、美丽、向上,充满了儿童情趣。教学中我注重学生的朗读指导,读出花孩子的天真烂漫、活泼可爱、勇敢坚强、活泼向上、童真童趣。同时也注重培养学生的问题意识。
歌曲处理部分我采取了对比式的教学方法,由于此曲有两遍“悄悄地、悄悄地、悄悄地”,而前后两遍的旋律是有变化的,相似之中又有不同之处,在演唱过程中我单独拿出这两个旋律进行视唱对比,让学生自主听辨,这样帮助孩子更好、更准确的演唱。这一环节我主要采取探究式和对比式两种教学方法。我的第四环节是“动”情——感动之情,首先在欣赏前我把老师比作米兰,然后提出疑问“为什么把老师比作米兰而不是蜡烛、春蚕呢?”让孩子们在歌曲中找到答案。孩子们聆听这首歌曲后,我问学生“你把老师比作什么?为什么呢?”探索学生的心声,然后在师与生的相互探讨中让孩子们懂得一支粉笔写就人生的轨迹;两鬓染霜谱成人生绚丽的乐章;三尺讲台留下人生的灿烂和辉煌!这就是我们可敬的老师。最后我朗诵了一首配乐诗朗诵歌颂老师,让孩子和我的心中都漾起那份沉甸甸的师母般的爱。
(三)教学重点:感受歌曲优美的情绪,体会人类与动物和谐相处的温暖。(四)教学难点:歌曲中连音与跳音的演唱处理以及训练学生轻声高位置的声音状态。二、说学法学生是学习的主体,要让学生能主动积极地学习,选择方法是很重要的。根据教材的内容和学生年龄特点,我在学法的指导时紧紧围绕教学目标,通过“听”“唱”“动”“奏”“演”相结合的方法,调动学生的积极性,使每位学生都参与到活动中来。用听唱法和接唱法(师生接唱、男女生接唱、小组接唱)学习歌曲,更容易调动学生学习的兴趣,有利于学生学习歌曲。三、说教法在教学中我主要采用情景教学法、欣赏法和练习法,运用音乐教学光盘,利用其视听结合,声像一体,形象性强的优点,为学生创设一个春的环境。在这种环境中,让学生感受自然的美、音乐的美。针对三年级学生好玩、好动的心理,我还编配了动作,既解决了难点,也实施了寓教于乐的教学策略。
(四)轮唱歌曲,表现黄昏。本环节设计了一个三部轮唱,主要源于三年级上册已经出现了轮唱,二部轮唱对于他们来说基本可以,如果加入三部轮唱,歌曲的意境会表现的更加淋漓尽致。(五)竖笛演奏,再现黄昏。在本环节中通过教师吹奏竖笛,学生打击乐伴奏,学生聆听竖笛演奏的《美丽的黄昏》,布置学生课后练习竖笛演奏。感受声乐、器乐表现的相同与不同之处,提高学生的音乐感受力。本节课为了让学生更好地聆听二拍子和三拍子的特点,我们精心选择了教材并自制了歌曲伴奏,通过本节课的学习,学生对四三拍有了很好的内心体验,并自然而然的在歌曲中表现出来。引导学生在参与音乐活动中,学习知识;提高技能;收获成功,体验合唱的美妙!学生在音乐中变得更加热情、开朗,自信。
五、说教学过程为了完成本节课的教学目标,我设计了以下教学过程。1.激情导入,质疑课题首先,教师唱《小放牛》,以童年的歌声引入课文,激发学生的兴趣。同学们,走出山乡、走出童年已经很久了,真的很久很久了。童年像一幅褪了色的画,贴在记忆迷离的墙壁上,好些地方都淡得看不出线条和色彩来了,而童年的一些歌却如那山间淙淙的小溪,清亮亮地流淌着,至今仍想在我的耳边,我的耳边又响起了那永远的歌声。(板书课题:永远的歌声)接着,提出问题,为什么作者以“永远的歌声”为题?歌声里包含着什么?这两个问题也是本节课的主线,接下来的教学环节都将围绕这两个问题进行。2.初读课文,理清文章的脉络自由朗读课文,想一想课文主要讲述了一件什么事情?
活动目标: 帮助复习巩固5,6,7,三个数,引导幼儿能够不受物体大小,形状和排列形式的影响正确感知和判断7以内的数。 活动准备: 自制多媒体课件活动过程:1、小猴摘水果 (1)小猴家里有一个果园,他种的水果都成熟了,小猴想请小朋友一起到他的果园里去参观,看一看果园里有些什么水果呢?(打开电脑屏幕) (2)果园上有几个菠萝?苹果树上有几个苹果?柿子树上有几个柿子?
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。3、(延伸):若随意做一个多面体,看看是否还是那个结果。
老师们,同学们,早上好!今天我在国旗下讲话的题目是《玩转数学,你能做到》。怎么想到要用“玩转”这词呢?因为我看到现在已很少有同学能以愉悦的心情对待数学的学习,若任由这种压抑持续,你会发现,灵感会逐渐枯竭,也会失去对未知探索的激情。我们真的可以做得更好些。可以在以下几方面做些尝试。1、重视自学。因为自学所获得的数学知识包含了自己的理解,掌握得更牢固,理解得更深,更因为自学习惯的养成、自学能力的提高有利于人的终生发展。数学如何自学?当然就是看书了。看数学书和看故事书有什么不同呢?故事书的一般方式是品味当前的内容,期待着后面的内容。而看数学书的方式应该是理解已经看过的内容,然后推测下面又是什么。就是你不要等书上写出来、不要急于往下看,先看能不能自己解决问题。看玩书后,还要检验是否读懂数学书。如何检验?因为我们的数学书,大多数在每一节后面都给你配了题目,你只要前面看完了,后面的题目做得出来了,就基本可以告诉自己,我前面看懂了。如果你前面看了,后面这些题目都做不出来,你还得重新再去看过。不要说,“我看过了,但是后面题目我一道都做不出来。”那你前面就没有用心去看过,我提议你要想着读数学书,这个想着,就是一边看一边想着,要动脑筋的看。
1.要创造性的使用教材,不拘泥于教材的形式。教材为学生的学习活动提供了基本线索,实施新课程目标、实施教学的重要资源。在教学中要创造性地使用教材。本节课教师通过具体的现实情境,充分利用学生的生活经验,让学生体验到数学来源于生活,打破了传统的注入式的教学模式,通过一系列精心设计把它改成学生所经历的情境引入课题,激发了学生的学习兴趣。在教学中引导学生进行“猜想一实验一分析一交流一发现一应用”, 学生在操作、思考、交流中不断地发现问题,解决问题,极大地调动了学生的学习的积极性,让学生尝到了成功的喜悦,激发了学生的发现思维的火花,经历了一番前人发现这个结果的“浓缩”过程,从而培养了学生独立探究和解决问题的能力。2. 相信学生并为学生提供充分展示自己的机会通过课堂上小组合作掷硬币试验、并展示试验结果的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。
练习3、先化简,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通过例题和联系将所学知识升华,提升)练习4、动动脑。(让学生进一步感知生活中处处有数学)(四)、畅谈收获、拓展升华1、本节课你学到了什么?依据是什么?整式的乘法存在什么没有解决的问题?(同桌互讲,师生共同小结)2、布置作业:习题1.9知识技能1四、说课小结本堂课我主要采用引导探索法教学,倡导学生自主学习、尝试学习、探究学习、合作交流学习,鼓励学生用所学的知识解决身边的问题,注重教学效果的有效性。学生在合作学习中,可以活跃课堂气氛,消除心理压力,在愉快的环境中学习知识,有效地拓展学生思维,成功地培养学生的观察能力、思维能力、合作探究能力、交流能力和数学学习能力。但由于本人对新课标和新教材的理解不一定十分到位,所以在教材本身内在规律的把握上,会存在一定的偏差;另外,由于对学生的认知规律认识不够,所以教学活动的设计不一定十分有效。所有这些都有待教学实践的检验。
教学不应仅仅传授课本上的知识内容,而应该在传授知识内容的同时,注意对学生综合能力的培养.在本节课中,教师并没有直接将运算法则告诉学生,而是由学生利用已有知识探究得到.在探究过程中,学生的数学思想得到了进一步的拓展,学生的综合能力得到了进一步的提高.当然一节课的提高并不显著,但只要坚持这种方式方法,最终会有一个美好的结果.2.充分挖掘知识内涵,使学生体会数学知识间的密切联系在教学中,有意识、有计划的设计教学活动,引导学生体会单项式乘法与单项式除法之间的联系与区别,感受数学的整体性,不断丰富学生的解题策略,提高解决问题的能力.3.课堂上应当把更多的时间留给学生在课堂教学中应当把更多时间交给学生.本节课中计算法则的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导.这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力.
接下来引导学生分析题中数量关系:题目要分配什么?按照什么分配?重点思考讨论:从3:2这个比中,你能知道什么?接下来鼓励小组合作尝试多种方法解答,重点理解按比分配的方法。2、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?这样设计为学生提供自主探索的空间。所以在教学中可以灵活地依据提出的方法调换教学顺序,并引导学生掌握两种不同的解题方法。安排学生的小组讨论方式能使学生一开始就畅所欲言,把几种不同思路比较和联系起来,在理解的基础上才能更好的掌握方法,并注意培养学生的检验能力。第三个环节:多层训练,形成技能。练习是数学课堂教学一个重要环节,我设计的练习题力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融合恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。
2.放大空间,升华思考由于我对教材的二度开发留给了学生足够的探索空间,课上学生探索数学的热情被充分调动,我们欣喜地看到:有的学生尝试着不同平面图形的旋转;有的学生只用一种平面图形,却旋转出不同的立体图形;有的学生的思维并没有停留在表象上,而是在深入地思考产生这一现象的原因……交流时学生的发现远远超出了我们的想象,这份生成带给我们的是惊喜,是赞叹,更是“以操作促思考”的教学行为结出的硕果。3.巧用课件,形成表象本节课,我充分运用现代信息技术将平面图形经过旋转形成立体图形的过程生动、逼真地再现出来,帮助学生将抽象的空间想象化为直观,进而形成表象,深植于学生的脑海中,促进了学生空间观念的形成。总之,在这节课上,我坚持把“促进学生发展”作为第一要素贯穿于课堂教学的始终,让学生在充满着民主、探究、思考的氛围中,积极操作、主动思考,发展了学生的空间观念。
④联系生活实际解决身边的问题,让同学初步感受数学与日常生活的密切联系,体验数学的应用,促进学生的发展。接下来,我再具体谈一谈这堂课的教学过程。3、说教学过程第一环节:创设情境,激qing导入。同学们你们看屏幕上的是什么?(出示图片)那么自行车车轮是什么形状的?为什么车轮要设计成圆形?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。这一环节的设计,主要是想体现数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
1、 如图4-25,将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流2、 画一个半径是2cm的圆,并在其中画一个圆心为60º的扇形,你会计算这个扇形的面积吗?与同伴交流。教师对答案进行汇总,讲解本题解题思路:1、 因为一个圆被分成了大小相同的扇形,所以每个扇形的圆心角相同,又因为圆周角是360º,所以每个扇形的圆心角是360º÷3=120º,每个扇形的面积为整个圆的面积的三分之一。2、 先求出这个圆的面积S=πR²=4π,60÷360=1/6扇形面积=4π×1/6=2π/3【设计意图】运用小组合作交流的方式,既培养了学生的合作意识和能力,又达到了互帮互助以弱带强的目的,使学习比较吃力的同学也能参与到学习中来,体现了学生是学习的主体。
教学反思: 1.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容忽视,在日常的教学中要时时注意.2.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.3.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫.
解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段垂直平分线的作图如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?
解:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得14521.1x-1200x=20,解得x=6.经检验,x=6是原方程的解.(2)第一次购买水果1200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钱为200×(8-6)=400(元),第二次赚钱为100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以两次共赚钱400-12=388(元).答:第一次水果的进价为每千克6元;该老板两次卖水果总体上是赚钱了,共赚了388元.方法总结:本题具有一定的综合性,应该把问题分解成购买水果和卖水果两部分分别考虑,掌握这次活动的流程.三、板书设计列分式方程解应用题的一般步骤是:第一步,审清题意;第二步,根据题意设未知数;第三步,根据题目中的数量关系列出式子,并找准等量关系,列出方程;第四步,解方程,并验根,还要看方程的解是否符合题意;最后作答.
【类型二】 分式的约分约分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根据分式的基本性质把公因式约去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法总结:约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.三、板书设计1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;若只改变其中一个符号或三个全变号,则分式的值变成原分式值的相反数.本节课的流程比较顺畅,先探究分式的基本性质,然后顺势探究分式变号法则.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。