雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
说【教学《内容】:北师大版五年级下册数学第七单元《用方程解决问题》的第一课时《邮票的张数》。说【教材分析】;本节课是在四年级下册所学的字母表示数,初步认识方程,会用等式的性质解决简单方程,会列方程解决简单实际问题的基础上进行教学的。通过本节课的学习,进一步理解方程的意义,感受方程的思想方法和价值,经历寻找实际问题中数量之间的相等关系,列方程求解的全过程,培养学生分析问题,解决问题的能力。说【教学目标】:知识和技能:1、通过解决姐弟二人的邮票张数问题,学会解形如“aⅹ±ⅹ=b”的方程,进一步理解方程的意义。2、会分析简单实际问题中的数量的相等关系,会用方程解决简单的实际问题。过程和方法:在解决问题的过程中,体会列方程解决问题的优点。情感、态度、价值观:在解决问题的过程中,体会数学的价值,增强学习数学的兴趣。
将三盒磁带包成一包,共有几种方案?怎样包装才能节约包装纸?(接口处不计)这道题,我会组织每一位学生进行摆一摆、想一想、算出最优方案。此时,学生对于包装的问题已经有了从感性到理性的认识,因此,可以让学生将前面总结出来的规律进行完善,突出了教学重点。教师板书:重叠面积大的面,会节约包装纸。(四)综合实践,提高能力。在这一环节,我设计了一道题。如果把4盒磁带包装成一大盒。怎样包装才最节约包装纸?此题让学生小组合作动手摆一摆。学生汇报时,教师多媒体演示:学生根据前面总结出来的规律,会立刻回答出是第一种方案。此环节的设计,使学生在运用规律的基础上能够解决实际问题,得到最优方案,也突破了教学难点。(五)课堂总结。这一环节,我会让学生说一说自己的学习体会。然后送给学生两条名言。
依据本节课的知识结构与学生的认知规律,这节课我是这样安排的:第一个环节:谈话交流,引入课题。先出示一个正方体。让学生说一说对正方体的认识,再让学生观察能看到几个面?分别是什么面?接着教师引出,既然同学们最多只能看见正方体的3个面,所以老师说这个正方体只有3个面露在外面。经过学生思考,确定还有两个面露在外面,然后出示课题-----露在外面的面。第二个环节:探索新知,发现规律。在这个环节中,我首先呈现一个摆放在墙角的小正方体:让孩子们观察有几个面露在外面,是哪几个面?这是一个简单的问题,学生通过观察都可以看到露在外面的面分别是上面,前面和侧面。然后计算露在外面的面的面积。学生自己尝试计算时,都能找到方法:计算一个小正方形的面积再乘以露在外面的面数就可以了。
在展示交流,精讲点拨环节学生答题过程中老师巡视,发现不同的方法让学生去板演。1、学生展示学生展示不同的方法,并进行讲解,让学生充分说出自己的思路及解题过程。在这一环节,学生进行了充分的互动,有质疑,有解疑,有纠错,有评价,有反馈,。2、教师根据学生的方法及时利用多媒体进行演示,让学生更加直观的理解不同的解题思路。然后变换题中的条件,让学生自己列方程解答。3、说一说生活中那些情境也可以用类似的等量关系式解答,这一设计让数学回归生活,加强了数学与生活的联系。在达标检测,强化巩固环节老师以课本为主,让学生完成课本练一练的2,4基础题。又进行了拓展,出了一道稍有难度的题进行拓展练习。既巩固了基础,又做到了分层优化。在小结评价,自我反思环节让学生说说本节课的收获,可以是学习上的,也可以是习惯上的。让学生进行了自我反思,反思自己的不足,加以改正。
1、说课内容:北师大版小学数学教科书四年级上册第80-81页2、教学内容的地位、作用和意义本课的教学内容是北师大版数学四年级上册第六单元内容,之前已经学习了前后,左右,上下等表示物体具体位置及简单路线等知识的基础上,让学生在具体的情境中,进一步探索确定位置的方法,并能在方格纸上用“数对”确定位置,是以前内容的发展,它对提高学生的空间观念,认识周围环境都有较大的作用,因此,针对本节课的特点我制定了如下的教学目标:3、教学目标(1)能在具体的情境中,探索确定位置的方法,说出某一物体的位置。(2)能在方格纸上用“数对”确定位置。(3)在合作与交流的过程中获得良好的情感体验。4、教学重点:学会用数对的方法在方格纸上确定能够事物的位置,理解数对的意义及方法。5、教学难点:正确地用数对描述物体的具体位置。
3.设计实验。怎样测量一粒黄豆的体积。这是在第二题的基础上进行的一个设计实验,再次回到“有趣的测量”,让学生不仅会计算,还要会自己想办法测量生活中的很多不规则物体的体积,这也是我们这节课要达到的目的。练习完之后教师再适时将学生带进数学万花筒,感受两千多年前阿基米德的风采,激发了学生对数学的兴趣,增强他们主动探索科学知识的意识。(四)、总结回顾评价反思在这一环节让学生讲一讲收获、谈一谈感受,让学生自己评价自己,使学生体验到成功探索和解决问题的乐趣,树立学好数学的信心,为学生自主探索提供更为广阔的空间六、说板书设计本节课我采用重点内容提纲式板书,简单明了,重点突出。利用不同色彩的区分吸引学生的注意力,突出“转化”这一重要思想。
一、说教材:1.说课内容:本节课的内容是北师大版5年级数学下册第8单元的《复式折线统计图》。2.教材分析:这节课的内容是在学生学习了单式折线统计图和复式条形统计图的基础上教学的。这节课的内容包括制作复式折线统计图的必要性、制作方法以及对这种统计图的分析预测。教材在设计中,主要突出了以下两个方面:(1)对比。为了方便比较甲、乙两个城市各月的降水量,把两个单式折线统计图画在同一幅图上,变成复式折线统计图。让学生感受出现复式折线统计图的必要性和其带来的好处。(2)读图。通过对复式折线统计图中两条折线升降的分析,对数据进行合理的预测,这也是课标的要求。3.教材的地位和作用:本课的学习,不但可以用来解决日常生活中的一些实际问题,也是今后学习更多其他统计图的重要基础。
学生掌握数学概念过程的本身就是一个把教材知识结构转化成自己认知结构的过程,这一过程的结果可能形成正确的数学概念,也可能由于主、客观原因而形成一些错误的数学概念。因此,在这一阶段有两大任务要完成,一是强化已经形成的正确认识,二是修正某些错误认识,使掌握的概念都能正确反映数学对象的本质属性。在情境中解决问题是从新课教学到学生独立作业之间的一个重要环节,目的在于巩固所学知识,并把知识转化为技能。教材“试一试”和“练一练”的第1、2题,让学生通过观察、思考,并且在有了比较充分的感性体验的基础上揭示体积概念及让学生充分感受同一物体形状变了,但体积保持不变,增强实际体验。“练一练”第3题,让学生体会到如果每个杯子的大小不同,那么3杯就可能等于2杯,这是为后面体积单位作铺垫。
(一)说教法本节课我先出示情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而列出算式。接着讨论具体的计算方法。教材中呈现了两种计算方法。在这个过程中,先让学生自主进行计算,再组织讨论和交流算法之间的联系,明白分数混合运算的顺序。通过本节教学,使学生学会有顺序的观察题、认真审题、分析数量关系、正确计算、概括总结、检查的学习习惯。(二)说学法本节课是分数加减法的第二课时,因为前面学习异分母分数的加减法以及应用异分母加减的知识,因此,大多数学生对这一类型的加减法已经有了一定的计算能力和计算方法,基于此,我在教学中将加减运算的学习和解决问题结合起来,在加强学生的计算能力的同时,更侧重了学生提出问题和解决问题的能力的训练,也就是让学生在经历探索运算方法的过程中,体验算法多样化。
五、说教学过程为了高效地实现教学目标,整个教学过程分为如下几个环节进行:环节一:创设情景,导入新课在新课开始时,用多媒体课件以PPT的形式展示几幅含有长方体和正方体的图片。即建筑物,道路和家具。让学生通过观察图片找出其中的长方体。然后,让学生联系到生活中的物体,找出2到3个长方体的实物。并在这些实物的基础上呈现长方体的几何图形。也由此导入新课——长方体的认识,板书课题,长方体的认识。环节二:合作学习,探究新知。在这个环节中,我设计了这样几个活动,来落实教学目标。活动一,“数一数”。把学生分成几个小组,让他们观察手中的长方体纸盒,请他们找出长方体有几个面,再找出面与面之间的线,由此导入棱的概念,通过观察,他们发现每三条棱相交于一点。由此导入顶点的概念,再找出有几个顶点。并在设计的表格中板书。
三、说学法有效的数学学习活动不是单纯地依赖模仿与记忆,而是一个有目的的、主动建构知识的过程。为此,我十分重视学生学习方法的指导,在本节课中,我指导学生学习的方法为:观察发现法、动手操作法、自主探究法、合作交流法,让他们在说一说、摆一摆、填一填、做一做、想一想等一系列活动中探索长方体体积的计算方法。我力求以"长方体、正方体体积"这一数学知识为载体,通过学生主动参与、自主探究、发现结论的过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上。四、说教学流程教学时.我安排了情景引入.揭示课题,自主探究.推导公式,利用关系.类推公式,巩固练习.运用公式,全课总结.交流评价五个环节.(一)激情引趣.揭示课题.首先,通过比较生活中一些物体的大小,复习体积概念。
一、关于教学目标的确定:第五章的主要内容是一元一次不等式(组)的解法及其在简单实际问题中的探索与应用。探索不等式的基本性质是在为本章的重点一元一次不等式的解法作准备。不等式的基本性质3更是本章的难点。可是说不等式的基本性质这个概念既是不等式这一章的基础概念又是学生学习的难点。因此我选择此节课说课。教参指导我们:教学要注重和学生已有的学习经验和生活实际相联系,注重让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。注重“概念的实际背景与形成过程”的教学。使学生在熟悉的实际问题中,在已有的学习经验的基础上,经历“尝试—猜想—验证”的探索过程,体会“转化”的思想方法,体会数学的价值,激发学习兴趣。在教学中要渗透函数思想。运用数学中归纳、类比的方法,理解方程与不等式的异同点。
情景感知概括运用设疑诱导动手操作合作交流尝试活动启发引导类比发现演练结合观察分析自主探索问题讨论利用尝试活动“我来当老师!”给学生提供设计问题的机会,培养他们实事求是的科学态度,勇于质疑、敢于创新的良好习惯及数学应用能力。例1、根据因式分解的概念,判断下列由左边到右边的变形,哪些是因式分解,哪些不是,为什么?通过罗列一些似是而非、容易产生错误的对象让学生辨析,促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构。例2:解答下列问题:(1)993-99能被99整除吗?能被98整除吗?能被100整除吗?(2)求代数式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。让学生进一步体会用分解因式解决相关问题的简捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),则m=,n=。
活动四:自主学习,尺规作图先阅读,再尝试作图,思考作图道理,小组讨论,“为什么作图过程中必须以大于1/2AB的长为半径画弧?”同桌演示尺规作图。最后折纸验证,使整个学习过程更加严谨。我将用下面这个课件给学生展示作图过程。再次回顾情境,让学生完成情境中的问题。(三)讲练结合,巩固新知第一个题目是直接运用性质解决问题,比较简单,面向全体学生。我还设计了第二个题目,想训练学生审题的能力。(四)课堂小结在学生们共同归纳总结本节课的过程中,让学生获得数学思考上的提高和感受成功的喜悦并进一步系统地完善本节课的知识。(五)当堂检测为了检测学生学习情况,我设计了当堂检测。第一个题目,让学生学会转化的思想来解决问题;第二个题目练习尺规作图。
[设计意图]节环节的设置是为了使学生在掌握不等式性质的基础之上,加以拓展的作业,使课程的内容不但能满足全体学生需求,更能满足学有余力的学生得到更大收获,从数轴上获取信息来完成填空,从而体现数形结合的思想,学生通过参与活动,体会挑战成功的喜悦,并且他们的求胜心理得到了满足,沉醉在知识给他们带来的快感中完成本节课的学习,(六)课堂小结最后,凯旋归来话收获:通过本节课的学习,你收获到了什么?学生们都积极的举手回答,说出了各种各样的收获,比如:1、学会了不等式的三条基本性质2、学会了用字母来表示不等式的性质3、学生不等式与等式的区别等等;学生在回答的时候,老师加以评价和表扬并展示主要内容;这里教师要再次强调,特别注意性质3,两边同乘(或除以)一个负数时,不等号的方向要改变,数学思想的方法是数学的灵魂,这节课我们体验了三种数学思想,一是类比的思想,二是数形结合的思想,三是分类讨论的思想,
一、教材分析轴对称是现实生活中广泛存在的一种现象,本章内容定位于生活中轴对称现象的分析,全章内容按照“直观认识——探索性质——简单图形——图案设计”这一主线展开,而这节课作为全章的最后一节,主要作用是将本章内容进行回顾和深化,使学生通过折叠、剪纸等一系列活动对生活中的轴对称现象由“直观感受”逐渐过渡到从“数学的角度去理解”,最后通过图案设计再将“数学运用到生活中”。轴对称是我们探索一些图形的性质,认识、描述图形形状和位置关系的重要手段之一。在后面的学习中,还将涉及用坐标的方法对轴对称刻画,这将进一步深化我们对轴对称的认识,也为“空间与图形”后继内容的学习打下基础。二、学情分析学生之前已经认识了轴对称现象,通过扎纸探索了轴对称的性质,并在对简单的轴对称图形的认识过程中加深了对轴对称的理解,但是对生活中的轴对称现象仍然以“直观感受”为主。
经过探究发现只有10与11出现的概率最大且相等(在探究的过程中提醒学生按求等可能性事件的概率步骤来做,在判断是否等可能和求某个事件的基本数上多启发和引导,帮助学生顺利突破难点。)及时表扬答对的学生,因为这个问题整整过了三个世纪,才被意大利著名的天文学家伽利略解决。后来法国数学家拉普拉斯在他的著作《分析概率论》中,把伽利略的这个解答作为概率的一个基本原理来引用。(适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的)8、课堂小结:通过这节课的学习,同学们回想一下有什么收获?1、基本事件和等可能性事件的定义。2、等可能性事件的特征:(1)、一次试验中有可能出现的结果是有限的。(2)、每一结果出现的可能性相等。3、求等可能性事件概率的步骤:(1)审清题意,判断本试验是否为等可能性事件。
(3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的