2、运用撕撕、拼拼、贴贴、涂涂的方法制作美丽的雪花。 3、在活动中体验成功的快乐,初步产生热爱大自然的情感。 活动准备:颜料、胶水、抹布、刷子、白蜡笔画好的雪花图案、画好的雪花图案 活动过程: 一、导人活动,引起幼儿的兴趣。 (听音乐小雪花的歌曲,让幼儿听着好听的声音一起边唱边跳进教室。) 师:小朋友,冬天到了,你们最喜欢冬爷爷的什么礼物呀?引导幼儿讨论。教师:冬天天气很冷,天空中下起了雪花,小朋友你们喜欢雪花吗?今天,冬爷爷真的送来了你们最喜欢的礼物,看,放课件。 二、欣赏雪花,教师讲解。 (通过看课件,让幼儿认识下雪了、雪花、雪人的词,并知道雪花有六个花瓣。)师:今天老师给雪花拍了一张照片,让幼儿看,问幼儿有没有看到呀?没有?可是,这片雪花就在这一张纸上,老师来变一个魔术给你们看看,把他变出来,好不好。
2、提高手的控制能力,进一步提高对绘画活动的兴趣。3、提高观察智力、模仿智力、构思与想象智力。活动准备:1、电脑制成的动画:螃蟹、金鱼、蝴蝶的动态及留下的痕迹并配上儿歌。2、幼儿每人一支勾线笔,画有背景的画纸,各种小动物的图片若干。3、每组一盒浆糊,毛巾若干。活动过程:1、放电脑动画,引起幼儿兴趣。指导语:今天有一些小动物要来和我们小朋友做朋友,你们开心吗?我们来看看是哪些小动物?它们是怎么来的?放电脑画面:小金鱼,尾巴大,摇摇尾巴游呀游;花蝴蝶,来跳舞,圆圈舞呀真漂亮;小螃蟹,力气大,东爬西爬找朋友。
二、教学要求:1、教幼儿能够对大小区别较明显的4-6个物体,按从小到大或从大到小的顺序进行排序。2、复习5以内的数数。三、教学准备1、实物套娃1套2、大小不同颜色不同的圆形塑料片一组5张,每人一组。
一:活动目标1、 能按顺序的进行细致的观察,将衣着相同的两个小熊找出来;2、 提高幼儿的视觉辨别能力。二:活动准备1:挂图:〈〈视觉辨认〉〉;2:幼儿用书:〈〈我的数学〉〉第22页;3:小熊卡片24张,裤子线条、颜色一样的,各6张,分4组;4:水彩笔、粉笔。
准备:丰富相关知识,每人一册图书过程:(一)、猜谜语,引起幼儿的兴趣。谜语:“不用手,不用斧,就能造出美丽的小茅屋。”(鸟巢)(二)、导入故事、激发兴趣1、出示四类鸟(山雀、老鹰、啄木鸟、火烈鸟)问问这些鸟你们认识吗?2、你喜欢它们吗?为什么?3、它们还是建筑师呢,它们建造的房子是怎么样的?大家想知道吗?让我们一起来看一下。
2、初步体验数字在生活中的作用以及与人们生活的关系。 活动准备:收集马路边的数字照片、PPT、录像 活动过程:一、说一说(交流照片,引发幼儿对马路边数字的兴趣)出示幼儿收集的照片1、幼儿互相交流2、集体讨论3、小结
三、准备: 1、幼儿人手一张记录卡; 家里的数字: 2、课件制作:我的家 课件一:家里的各种物品(鞋、桌子、椅子、茶杯、玩具、电视机等物品)。 4 6 5 3 2 1 课件二:厨房、客厅、卧室。 三、过程: 观看录像一)、认识数字,理解6以内各数字的实际意义: 1、幼儿交流记录卡,说说在家中发现了哪些数字? A、直观的数字(数序):如、电话上的数字、钟上的数字、电器上的数字;
二、活动目标:1、认识5以内的序数,学习序数词“第几”。2、能从不同的方向找到物体排列的位置。3、发展观察能力、判断能力,提高动手操作能力。三、活动准备:1、有5层高的楼房背景图一幅,幼儿熟悉的小动物5个,如小狗、小猫、小兔、小猪、小猴等。2、幼儿每人一份操作材料:5只不同的小动物,有5节车厢的火车或有5棵小树的图片等。
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、主动收拾整理班级的玩具等。活动准备:准备统计表、笔,幼儿学习包《我们的班级》活动过程:1、 谈话引题。引导幼儿观察班级的物品、玩具等环境。 2、统计物品统计物品及玩具的数量,并用数字记录在统计表上。
[活动目标]1、培养幼儿的节奏感受力和对音乐活动的兴趣。2、丰富幼儿的想象力和创造力。 [活动核心]1、让幼儿学会基本的击拍方法和强弱变化,能听节奏变换。2、幼儿能自己动手动脑制作或寻找伴奏乐器。 [活动准备] 电子琴1台,打击乐器1套,各种瓶罐,沙子,石头,种子,水,筷子等等供幼儿操作的材料。
二.活动准备: 1.挂图2幅,录有雨声和轻快音乐的磁带,录音机2..鸡妈妈的头饰(1个),小鸡头饰(同幼儿数)硬纸板做的乌龟数个并用鱼线串成一长条(做小桥) 3.活动室内布置故事场景:小鸡的家,对岸的小树林.河面三,活动过程: (一).导入活动: 1.以《小鸡的家》谈话为题,引起幼儿的兴趣。 教师扮演鸡妈妈,幼儿扮演小鸡,在鸡屋里(播放雷雨声),鸡妈妈启发小鸡们想想,说说:听到了什么声音?外面会发生什么事?2.雨停了,鸡妈妈推开门一看,房子被水包围了,启发小鸡们想想过河的好办法。(幼儿积极展开想法)
2、培养幼儿的观察能力。准备:背景图一张,贴绒教具:小鸭子6个,数字卡:“1——6”若干,一袋糖果,玩具熊一个。学具:糖果与盘子,数字卡“1——5”每人一套,操作卡每人一套。活动过程:在音乐的伴奏下,老师抱着小熊开着汽车进课室。师:(出示小熊)小朋友们下午好,小熊听说我们班的小朋友可听话了,而且还特别的聪明能干,于是,小熊特意开着汽车给小朋友送来了一袋好东西,你们想不想知道小熊带的是什么东西呢? 请一位小朋友来摸摸,不要出声,让他悄悄告诉下一个小朋友,依次类推,最后,请最后一个小朋友来告诉大家。
2、在探索操作活动中,知道按序分合不易漏掉数字,在观察中发现两部分数之间的增1减1的关系。3、会用较完整的语言讲述操作过程。活动准备:1、教具: 放大的操作材料。2、学具: 购物券、水果卡片,记录卡。活动过程:一、复习8以内的加减
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高