(1)主要内容:《落花生》一文是五年级上册第一单元的一篇讲读课文。课文都是作者通过由生活中事物领悟到的人生哲理。五年级的孩子思维活跃、求知欲强、乐于表达、愿意交流,正是引导他们明事理、辨是非,培养人文素养、提高语文能力的关键期。学习上,他们也具有一些学习能力,掌握了一些学习方法,这更需教师进一步引导,循循善诱,让学生在学习中生活,在生活中学习。因此,本课教学设计以引导学生“领悟人生、了解写法、关注生活”为主线,进一步领导学生走入文本、感受情感、领悟生活。《落花生》这篇课文通过介绍作者一家人过花生收获节的经过,通过收获节上对花生好处的谈论,让学生懂得:人要做有用的人,不要做只讲体面,而对别人没有好处的人。(2)教学目标:本课的教学目标有以下四点:1.学会本课生字,正确读写词语。
大家好!今天我说课的内容是《慈母情深》。下面我从教材、学情分析、教法、教学过程、板书设计五个方面进行说课。一、说教材《慈母情深》选自著名作家梁晓声的作品《母亲》,讲述的是贫穷辛劳的母亲不顾同事的劝阻,毫不犹豫地给钱让“我”买《青年近卫军》的事,表现了慈母对孩子的深情,以及孩子对母亲的敬爱之情。根据教材的特点、课程标准、单元教学目标以及五年级学生已有的知识水平,我确定了本课的教学时间为一课时,教学目标有三个:1.知识目标:认识11个生字,会写12个生字,理解“失魂落魄、震耳欲聋、龟裂”等词语。
其次,教学目标的设定。1.学会本诗中的生字,能正确、流利、有感情朗读古诗,借助教材注释,正确理解古诗的大概意思。2.理解诗人所要表达的思想感情,让学生从中受到教育。3.通过反复诵读,在读中感悟,体会诗歌中表达的思想感情。最后,教学重点、难点的确定。我将教学重点设为有感情地朗读古诗,正确理解古诗大意,体会诗人忧国忧民的情怀。教学难点是在领悟想象中感受诗歌的意象,体会诗人抒发的情感。二、说教法按照语文新课程标准的要求,结合小学生的特点,在教学时我主要采用以下教学方法。1.朗读法,让学生品味诗句的韵味。2.情境教学法。创设情境,利用图片等,激发学生的好奇心和求知欲望。3.启发式教学法,合理设置问题,引导学生把握知识点。
一、说教材1.教材的地位和作用:《牛郎织女》是我国四大民间故事之一,带有神话色彩。本文语言朴素、简洁、清新自然,读来琅琅上口。从表达方式看,这篇课文与其他几篇都以记叙为主;在学习方法上与前一课没有割裂,可以继续学习记叙文的方法。2.教学目标:本文是民间故事,所以将目标定位在掌握情节的基础上,把握人物形象,从而在训练口头表达能力的同时使学生体会文章主旨,具体目标如下:知识与能力:了解有关民间故事的知识及产生的历史背景;积累词语;掌握主要情节,把握人物形象;培养想象能力和口头表达能力。过程与方法:自主解决生字词;感受人物形象;情境表达。情感态度与价值观:体会以牛郎为代表的古代劳动人民对幸福生活的追求和向往;培养学生善良的品性和对恶势力憎恶的感情。3.教学重难点:人物和情节是故事的主要组成部分,故事总是用来讲的,因此确定教学重点为:掌握主要情节,把握人物形象;情境表达。
一、说教材《示儿》是南宋著名爱国诗人陆游的绝笔。当时的南宋金兵不断入侵、宋军节节败退,国家山河破碎,不复统一。陆游悲愤交加,临终前立下遗嘱,既有对壮志未酬身先死的悲愤,更有对祖国山河统一必成的坚定信念。二、说教学目标根据新课程标准对本学段学生的要求,我从三个维度设定了以下教学目标1.知识与技能:自学生字,理解“元、同”等词语的意思。2.过程与方法:借助注释,理解诗意;反复诵读,领悟意境。3.情感态度与价值观:引导学生与作者情感产生共鸣,激发学生的爱国主义情怀。三、说教学重难点诗歌的意境作为本节课的重难点。四、说教法和学法我主要采用朗读指导法、谈话法等,借助多媒体课件展示,创设情境,领悟诗歌意境。在学法上,采用读、想、说、写相结合的方法,让学生明诗意、悟诗情。
二、学生分析五年级是小学生知识、能力、情感价值观形成的关键时期,他们对自我、他人、家庭、社会有了一些浅显的认识,养成了一定的好的学习习惯,有了一定的阅读能力,读书提问的能力。因本课的阅读性、活动性、实践性较强,绝大部分学生对于如何在阅读活动中边读边想的方法不明确,在实践中应怎想,想什么不够明晰。下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈。三、说教法在教学中,我们不仅要让学生“知其然”而且要让学生“知其所以然”,科学合理的教学方法,能使教学效果事半功倍,达到教与学的和谐完美统一。为了达到目标,突出重点,突破难点,解决疑难,我具体运用了以下几种教法,情景设置法——主要是激发学生情感,引起他们的学习兴趣,讲授法——充分发挥教师的主导作用,系统地向学生传授知识。点拨法——是教师在学生讨论的过程中,伺机点拨,让他们展开联想和想象,拓展思路。在以上几种教法中点拨法是最重要的一种方法。
首先说教材。《桂花雨》是一篇回忆童年生活的文章,课文以“桂花雨”为题,以“桂花香”为线索,写了“我”童年时代的“摇花乐”,表现了儿时生活的乐趣,字里行间充满了对家乡、对童年生活的无比怀念。描写生动、细致,充满感情。根据新课标对小学语文教学的要求和本文的教学内容和特点,结合学生的实际情况,我确定了本课时的教学目标:1.认识2个生字。读读记记“姿态、迷人、至少、邻居、成熟、完整,尤其、提前、香飘十里”等词语。2.正确、流利、有感情地朗读课文。3.通过自读自悟和同学交流,体会作者思恋家乡的思想感情,并领悟这种感情是怎样表达出来的。
尊敬的各位评委、各位老师:大家上午好!我是……,我今天说课的内容是《我的“长生果”》。希望各位老师多指教。我所说的我将本文的说课按照:说教材地位及教学目标--说教材的重难点--说学情--说教法学法--说教学设计,这五个环节来展开说课。一、说教材地位及教学目标《我的“长生果”》是一篇回忆性的散文。作者以一种娓娓交谈的方式,用朴实的话语,回忆少年时代的读书经历和读书收获,真诚抒写了阅读和写作带给自己的愉悦。字里行间融注了作者对生活,对人生真实的体验和感受,给人思考和启迪。结合本单元教学目标和教材自身特点,我把本课教学目标定为:1.知识和技能目标:(1)据标志性的词句理清文章思路,概括内容要点,在听说双方互动过程中,增强知识的筛选能力。(2)品味生动形象的语言,体味字里行间流露的真情实感,感受散文“形散神聚”的魅力。
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
解析:当截面与轴截面平行时,得到的截面的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面的形状是圆,所以截面的形状不可能是三角形.故选A.方法总结:用平面去截圆柱时,常见的截面有圆、椭圆、长方形、类似于梯形、类似于拱形等.探究点三:截圆锥问题一竖直平面经过圆锥的顶点截圆锥,所得到的截面形状与下图中相同的是()解析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线.如图,由图可知得到的截面是一个等腰三角形.故选B.方法总结:用平面去截圆锥,截面的形状可能是三角形、圆、椭圆等.三、板书设计教学过程中,强调学生自主探索和合作交流,经历操作、抽象、归纳、积累等思维过程,从中获得数学知识与技能,发展空间观念和动手操作能力,同时升华学生的情感态度和价值观.
目的:课后作业设计包括了两个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思1.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法.2.作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.
第三环节:课堂小结活动内容:1. 通过前面几个题,你对列方程组解决实际问题的方法和步骤掌握的怎样?2. 这里面应该注意的是什么?关键是什么?3. 通过今天的学习,你能不能解决求两个量的问题?(可以用二元一次方程组解决的。4. 列二元一次方程组解决实际问题的主要步骤是什么?说明:通过以上四个问题,学生基本上掌握了列二元一次方程组解决实际问题的方法和步骤,可启发学生说出自己的心得体会及疑问.活动意图:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.说明:还可以建议有条件的学生去读一读《孙子算经》,可以在网上查,找出自己喜欢的问题,互相出题;同位的同学还可互相编题考察对方;还可以设置"我为老师出难题"活动,每人编一道题,给老师,老师再提出:"谁来帮我解难题",以此激发学生的学习兴趣和信心。
[例3]、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。四、巩固强化:1、一个正方体的截面不可能是( )A、三角形 B、梯形 C、五边形 D、七边形2、用一个平面去截五棱柱,边数最多的截面是_______形.3*、用一个平面去截几何体,若截面是三角形,这个几何体可能是__________________________________________________.4*、用一个平面截一个几何体,如果截面是圆,你能想象出原来的几何体可能是什么吗?如虹截面是三角形呢?5*、如果用一个平面截一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?6*、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续为大家介绍这两种几何体的截面.(1)圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:
小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x张,2元的贺卡为y张,那么x,y所适合的一个方程组是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设1元的贺卡为x张,2元的贺卡为y张,可列方程组为x+y=8,x+2y=10.故选D.方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.三、板书设计二元一次方程组二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。