D的十八大以来,以同志为核心的D中央以猛药去疴、重典治乱的决心,以刮骨疗毒、壮士断腕的勇气,坚持反腐败无禁区、全覆盖、零容忍,坚定不移“打虎”“拍蝇”“猎狐”。D内政治生态得以净化,D内政治生活展现新气象,D心民心为之振奋。但回过头来,审视那些腐败分子,可以发现他们之所以跌入违纪违法的陷阱,从根本上讲就是把初心和使命抛到九霄云外去了。房间要经常打扫,镜子要经常擦拭。正如所指出,不忘初心、牢记使命不是一阵子的事,而是一辈子的事。新时代,各级D组织和广大D员、干部更要经常进行思想政治体检,以D的创新理论滋养初心、引领使命,从D的非凡历史中找寻初心、激励使命,在严肃D内政治生活中锤炼初心、体悟使命,锐意进取、开拓创新,埋头苦干、真抓实干,把我们的事业继续向前推进。把酒酹滔滔,心潮逐浪高。今年是决胜全面建成小康社会、打赢精准脱贫攻坚战、实现“十三五”规划收官之年。以此次ZT教育为起点,以理想信念烛照奋进方向,我们的道路必将越走越宽广,我们的梦想必将化为光辉的现实。
伴随着ZT教育的深入开展,各级D组织有力推动,广大D员、干部积极投入,人民群众热情支持,整个ZT教育特点鲜明、扎实紧凑,达到了预期目的,取得了重大成果——各级D组织和广大D员、干部深入学习实践新时代中国特色社会主义思想,提高了知信行合一能力;思想政治受到洗礼和锤炼,增强了守初心、担使命的思想自觉和行动自觉;干事创业、担当作为的精气神得到提振,推动了改革发展稳定各项工作;积极解决群众最急最忧最盼的问题,强化了宗旨意识和为民情怀;深入进行清正廉洁教育,涵养了风清气正的政治生态;重点抓突出问题专项整治,消除了一些可能动摇D的根基、阻碍D的事业的因素。不忘初心、牢记使命,是加强D的建设的永恒课题,也是全体D员、干部的终身课题。这次ZT教育,总结历次D内集中教育经验,对新时代开展D内集中教育进行了新探索、积累了新经验。
(二)夯实农村消防设施基础。xxx市政府将农村消防建设工入县(市)、区政府责任书中乡、村消防规划制定与实施、农村消防设施建设、多种形式队站建设等进行了明确要求。全市各地政府不断大农村消防建设资金投入xx市投入200余万元各乡镇专职消防队配备了6台消防车并将专职消防队经费纳入政府财政预算。xx市12个乡镇全部建立志愿消防队240个行政村全部配备手抬机动泵、建立村屯志愿消防队农村志愿消防队员达到1400余人配备各种载水车辆243台完成了“一村一泵一车一队一水点”的总体工部局。林口县自主研发并推广了“拖拉式多功能水罐抗旱消防车”普及到该县156个村屯农村自防自救能力极大升。(三)夯实群防群治工基础。不断细化消防安全“网格化”管理在村屯成立消防安全管理小组由村委会负责人负责治主任、积极分子、民兵等相关人员参证了农村基层消防工的有效开展。
(三)夯实群防群治工基础。不断细化消防安全“网格化”管理在村屯成立消防安全管理小组由村委会负责人负责治主任、积极分子、民兵等相关人员参证了农村基层消防工的有效开展。同时积极推动村民消防联防组织建设由各村屯农村警室组织并发挥协调和监管用联合各村民委员会由村长、治主任带头发动村民进行消防检查和防火巡查成效明显。(四)夯实农村消防队伍建设基础。全市各地本着“1211”、“1111”原则大力发展多种形式消防队伍创新建立了“四级灭火响应”农村消防机制(即以村屯志愿消防队出动1台手抬机动泵、简易灭火工具到场进行火灾扑救一级响应以行政村所辖志愿消防队到场增援二级响应以乡镇专职消防队出动到场增援三级响应以公安消防队出动到场统一组织指挥火灾扑救四级响应)并在全市范围内推广。
(三)夯实群防群治工作基础。不断细化消防安全“网格化”管理,在村屯成立消防安全管理小组,由村委会负责人直接负责,治保主任、积极分子、民兵等相关人员参加,保证了农村基层消防工作的有效开展。同时,积极推动村民消防联防组织建设,由各村屯农村警务室组织并发挥协调和监管作用,联合各村民委员会,由村长、治保主任带头,发动村民进行消防检查和防火巡查,成效明显。(四)夯实农村消防队伍建设基础。全市各地本着“1211”、“1111”原则,大力发展多种形式消防队伍,创新建立了“四级灭火响应”农村消防机制(即以村屯志愿消防队出动1台手抬机动泵、简易灭火工具到场进行火灾扑救为一级响应,以行政村所辖志愿消防队到场增援为二级响应,以乡镇专职消防队出动到场增援为三级响应,以公安消防队出动到场,统一组织指挥火灾扑救为四级响应),并在全市范围内推广。
2、喜欢与同伴交流自己的生活经验,愿意在集体面前大胆说话。活动准备:《汽车城》活动课件一个活动指导:一、情境导入,引发兴趣孩子们和老师一起进行音乐游戏“开汽车”,创设“红绿灯”的游戏情境。二、游戏汽车城,了解车辆给生活带来的便捷1、汽车城里有些什么车?2、互动游戏——各种各样的车(一)(1)猜一猜,这是一辆什么车? (2)卡车可以帮助我们干什么呢? (3)情景:秋天到了,果园里的苹果都熟了,我们该怎么运回幼儿园呢?小结:原来卡车可以帮助我们运输各种各样的货物,真方便。
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
三、依据理念说教学目标和教学重难点根据《语文新课程标准》对低年级阅读教学的要求,本课时三维教学目标分别为:1.是认识12个生字,在学习生字过程中积累识字方法。2.是正确、流利、有感情地朗读课文,培养学生初步的阅读能力,学习语言的能力及自主学习的能力。3.巩固识字的方法,体会朗读的方法。4.从课文中受到要团结友爱、互相帮助的教育四、说说学生一年级学生具有天真活泼,好奇好问,好模仿易感染的心理特点,容易被直观形象、新鲜活动的事物所吸引,并能在教师创设的情境中获得体验,达到情感共鸣、因此在教学中,我根据学生的身心特点设计情境,设计游戏,分解朗读要求,分散识字难点,让学生在一堂课中能始终学得轻松,学得愉快。五、说说教学策略方法1、 创设情境法。创设故事情境,让学生切身投入到情境中去。2、 趣味识字法。用赛读排火车等方法巩固识字。3、 以读促悟法。指导朗读,边读边悟。
一、教学要求1、会写7个生字。2、会认13个字。3、正确、流利、有感情地朗读课文。通过朗读课文,知道鸭子和公鸡的不同习性,懂得小伙伴之间要互相帮助。二、教材说明本课是一篇童话。讲的是小公鸡跟小鸭子一起玩,小公鸡给小鸭子捉虫子吃,小鸭子给小公鸡捉鱼吃。小公鸡下河后差点被淹死,幸亏小鸭子救了它。课文饶有趣味地讲了小鸡和小鸭的不同习性,以及它们团结友爱、互相帮助的美德。三、教学建议(一)教学准备准备本课的生字词语卡片、放大的课文插图、多媒体课件及朗读课文的录音带。(二)识字、写字教学学习生字。重点指导读准“他、河、说”和要求会认的字“块、捉”的音。
问题1. 用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出26+10=36种不同的号码.问题2.你能说说这个问题的特征吗?上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.你能举出一些生活中类似的例子吗?一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n种不同的方法.二、典例解析例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
当A,C颜色相同时,先染P有4种方法,再染A,C有3种方法,然后染B有2种方法,最后染D也有2种方法.根据分步乘法计数原理知,共有4×3×2×2=48(种)方法;当A,C颜色不相同时,先染P有4种方法,再染A有3种方法,然后染C有2种方法,最后染B,D都有1种方法.根据分步乘法计数原理知,共有4×3×2×1×1=24(种)方法.综上,共有48+24=72(种)方法.故选B.答案:B5.某艺术小组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人记为甲),只会钢琴的有6人,只会小号的有2人.把从中选出会钢琴与会小号各1人的方法分为两类.第1类,甲入选,另1人只需从其他8人中任选1人,故这类选法共8种;第2类,甲不入选,则会钢琴的只能从6个只会钢琴的人中选出,有6种不同的选法,会小号的也只能从只会小号的2人中选出,有2种不同的选法,所以这类选法共有6×2=12(种).因此共有8+12=20(种)不同的选法.
【活动目的】 1、通过幼儿动手操作,了解总数与部分数的概念以及它你之间的关系。 2、在学习了10以内加减法的基础上,幼儿能书面练习10以内数的加减法式子中的填空题。 【活动准备】 教具:装好皮球的篓子(大皮球4个、小皮球2个);装好水果的篓子(苹果7个、梨子3个) 学具:每人一个“小动物卡片”袋(两个品种,多少不一,总数不越过10);每人一盒橡皮泥;每人一支铅笔和一个数学练习本。
活动目标:1.探索橘子的大小与瓣数的多少是否有必然的联系;2.能清楚地表达探索的过程与结果;3.学习不受物体排列方式的影响计数,探索多种计数的方法;4.尝试用数学的方法解决问题。 活动准备:1.剥开的橘子人手一个、没剥开的橘子人手两个;2.笔、记录纸、卡片等。 活动过程:1.创设问题情境,引发幼儿思考与操作。(1)幼儿想办法点数橘子的瓣数并进行记录。师:我们班的小朋友都喜欢和大家分享东西,今天我们来分享橘子,分享之前老师要考验小朋友,如果你们挑战成功就可以分享橘子。挑战的问题是:如果你和大家分享一个橘子,每个人吃一瓣,可以有几个人吃到你的橘子,想一想可以用什么办法知道。幼:数一数。师:橘子是圆的又可以掰开,那可以怎样数呢?小朋友动脑筋想一想,可以跟旁边的小朋友商量,想好了拿一个橘子用你的办法试一试。数完了不仅要把数字记在心里,还要记在记录表上。
2、通过测量、比较面积的大小,初步体验面积守恒。 3、能积极尝试和比较主动地学习。 活动准备: 场地布置:面积大小相同、形状不同底块场地。 物质准备:塑胶板70块记录单、笔若干 活动过程: 一、集体活动: 1、给每个幼儿人手5块塑胶板,让幼儿用塑胶板自主地拼图。然后,请幼儿根据拼出的场地的形状,想想它们分别像什么?再请幼儿比较这些场地的面积大小。 2、引导幼儿讨论:你们拼出的场地的面积大吗?让幼儿通过铺垫子去发现5块场地是否一样大。 二、操作活动:给5块场地铺垫子并记录用了多少块板。 引导幼儿讨论如何分工合作完成任务。 出示记录单,引导幼儿将操作结果记录下来。 通过给不同的场地铺垫子,比较结果发现5块场地面积的大小。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。