1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
演讲稿频道《国旗下的讲话稿:感恩母亲》,希望大家喜欢。尊敬的老师、亲爱的同学们:大家早上好!今天我很高兴能站在这里为大家做国旗下讲话,我讲话的题目是“感恩母亲”。今天是五月十一日星期一。同学们知道昨天是什么日子吗?五月的第二个周日就是我们的母亲节。有一个人,她永远站在你内心最深处,你愿意用自己的一生去爱她;有一种爱,她让你肆意的索取、享用,却不要你任何的回报……这个人,叫母亲;这种爱叫母爱。母亲节是我们天底下无数个伟大母亲的共同节日。这个节日是对母亲的赞美和颂扬,是提醒我们时刻记住,感恩我们的母亲。母亲给予我们生命的体验,我们感激;母亲是我们茁壮成长,我们感激;母亲给予我们教育和开导,是我们获取知识和力量,我们感激。在我们的生命里,总会有困难和曲折,是母亲给予我们关怀和帮助,所以我们更应该感激。现在电视上有段公益广告,是一位小男孩为自己的母亲洗脚的片断,我看了很感动。可是在现实生活中,能有几个儿女能做到呢?“滴水之恩,当涌泉相报”,我们或许有时会对一个陌生的人的一点关怀而铭记于心,却对母亲的博爱熟视无睹,嫌她唠叨,或因一些小事就大发雷霆……然而,母亲却从不放在心上,永远在一旁默默地忍受;当我们做错事时,耐心地开动教育我们,当我们遇到挫折时给予我们支持和鼓励。
2、纸杯若干,剪刀若干,胶布。 3、各色菊花和菊花图片 4、各色毛线若干,胶水 5、菊花茶,吸管 活动目标: 1、知道菊花在秋天开放,感受菊花的美与香。 2、培养幼儿的动手操作能力;学习正确使用各种工具和材料进行美术表现活动 3、 用自己喜欢的方式表现菊花的美,激发幼儿的审美情感。 4、 增进家长与幼儿间的感情交流。 活动过程: 一、 活动引入 提供菊花茶,让幼儿通过闻一闻、尝一尝,感受菊花的香味,引入菊花的课题。 (今天,小朋友们的爸爸妈妈来到幼儿园做客。老师给客人们准备了茶,小朋友们看看这是什么茶?老师请小朋友闻一闻,闻到什么味道?再请小朋友尝一尝,尝出什么味道?
一年来,公司紧紧围绕法律工作要点,以“四项审核”为工作重心,进一步推进公司法治工作新五年规划的实施,取得了一定的成就,为企业快速、稳健发展保驾护航。一是法律制度不断完善。为将法治工作全面融入企业中心工作和生产经营,努力推动法治工作开展广覆盖,推动“法治XX”再升级。二是合同管理水平不断提升。合同管理作为现代企业管理的重要内容之一。把好合同关,是现代企业经营管理成败的一个重要因素。合同评审率及通过率较以前有了大幅度的提升。三是项目总法律顾问、法律联络员制度建设进一步健全。明确工作范围和职责,经理或主要负责人为法治工作第一责任人,形成完整的纵向联动机制。同时,总法律顾问、法律联络员挂牌办公、职责上墙,增强了项目总法律顾问、法律联络员的使命感和责任心。
上午好,我是xxx。今天我国旗下演讲的主题是《争做文明礼貌的峨眉人》。中国有着五千年的悠久文明,是闻名世界的礼仪之邦。古人说:“不学礼,无以立”。就是说,你不学“礼”,便无法在社会中立足。文明有礼是一个人思想道德素质、科学文化素质和交际能力的外在表现。是一个人立身处世的前提。 然而,在生活节奏日益加快的今天,一些因文明礼貌缺失而出现的情况,导致小摩擦乃至于恶性冲突,甚至造成危害生命的严重后果。在我们身边,有许多同学,他们遵德守礼,是校园内的文明小天使,我们要向他们学习。但也能看到许多与文明守礼格格不入的陋习和言行。例如,一些同学在学校里,不尊重老师和同学,不会礼让,不讲礼貌,在校外,尤其是在上学放学的高峰期,往往是怎么近就怎么走,并没有顾及人行道及交通规则。 同学们,我们做为新时代的高中生,正在接受着知识的教育,更应该知书达理,举止文明,谈吐得体,注意自己的一言一行,提高道德素质、振兴民族精神,建设社会主义精神文明,这样才能不仅成为一个知识渊博的人,更能成为一个有道德修养和综合素质的高中生,一个对社会有用的人。
时光易逝,光阴难留。就在这个即将结束的六月里,又一批心怀理想的少年交出了他们的青春答卷。看吧——在紧张严肃的考场里,同学们信心满怀,堂堂正正,以笔为剑,披荆斩棘,令人钦佩;却难免有人别有用心,企图投机取巧,来攫取本不属于自己的高分,妄图破坏考试的公平性,令人不耻。这般行为与盗窃何异?考场如一面镜子,照出诸生百态,个人诚信与否就这样显露无余。这一幕幕场景再一次提醒我们:贯彻诚信考试精神,坚决拒绝舞弊作假。孔子曰:“人而无信,不知其可。”诚信,乃立德之本,树人之根。它是培养美德的基本要求,也是中华民族的优秀传统。而在检测能力水平的考试中,诚信就显得更加重要。我想:占小便宜的心理是导致作弊行为的原因,爱慕虚荣是诚信的死敌,也正是生活中许多不良现象的源头。
老师们、同学们:大家好!今天我演讲的题目是《专心致志,做学习的主人》。满怀着憧憬和希望,我们开始了新学期,这是一个能让我们实现理想,见证成长的一个学期。然而,激越澎湃之后,随之而来的却不尽是欢声与笑语,学习上虽然有着快乐,却已不再轻松,面对着一个个强手,看着他们的出类拔萃和独立张扬的个性,你或许自卑,或许哀叹,甚至怨恨自己的不争,但是,千万不要放弃,要坚信,只要有付出,就一定会有回报。随着新课改的全面展开,和xx、xx年高考新方案的公布,学习和生活都向我们敞开了新天地,也给了我们更多的挑战。每一位同学都要随时根据阶段考试的结果,和老师们的指导适时进行调整,不要自以为是,只埋头学习,不明确方向。这就要求我们要从现在起:首先,要养成上课积极思考,踊跃表达,质疑问难的良好习惯,只有这样,大家集思广益,相互交流,不仅有立于打破狭隘的思维界限,拓宽四位空间,而且还能增强相互合作和交流的能力。
尊敬的各位领导、老师,亲爱的同学们,大家上午好,我是来自高三班的张xx,很荣幸能在国旗下发言,今年是xx学校建校十周年,借此机会,我向广大同学发出号召:“优化良好的校园人文环境,喜迎十周年校庆盛典”同学们,首先,我想问你们一个问题:“如果有这样一个校园环境,那里垃圾遍地,臭味熏天,随时都可能和苍蝇来个人虫共舞。走在校道上,你还得学会迷踪步,因为一不留神就可能会遭到高空坠物,又或者踩到香蕉皮,技术好的话或许还有个漂亮的后空翻。但是,同学们,你们愿意在这样的环境中学习与生活吗?”相信大家都不大情愿吧!我们都知道,校园是我们学习与生活的场地,休闲与放松的乐园,只有拥有了一个良好的校园人文环境,才有舒适、美好的校园生活。同时,校园环境也是学校的一个窗口,直观地反映了学校的精神风貌,体现了学校的文化氛围。洁净、舒适的校园人文环境不仅是我们学习生活的需要,而且是陶冶情操的需要,营造良好的校园环境是我们每个人的神圣职责。走在干净整洁的校园内,几个同学间有说有笑地散着步,望着蔚蓝的天空,看着青葱的绿树,呼吸着清新的空气,又或者坐在树荫底下的石凳上津津有味地品读着课外书,这才是我们所追求的生活。
各位老师,各位同学:今天我发言的题目是打造闪光的个人,最近《中国青年报》分两期刊发了长篇报道《不可阻挡的价值发现》,全文指出了中国的人才正告别物美价廉的时代,跨向高素质高文化的时代,摆在中国人才面前的是光辉的前景,但文章也指出由于中国教育本身存在的痼疾,中国本土人才的素质与底蕴是否能够抵挡住全球化的竞争,这依然是个未知数。面对这场竞争,我们该如何去面对?我们提出“打造闪光的个人”这个张扬个性的口号,但我认为要打造闪光的个人必须先和我们同学探讨几个基本的问题。一、建构自己心中的道德标准这也许是一个老生常谈的问题,但关键在于道德标准它的价值核心将引导我们做出合理的判断和正确的行动。这种引导与判断将在以后的人生道路中左右我们人生的航向正因为我们学会了明辨是非,做人做事才信念坚定;正因为学会了服务他人,做人做事才义利和谐;正因为我们学会了诚实可信,做人做事才会心安理得,才妥帖了国际竞争的核心标准……,而越来越多的事实告诉我们因为是非不辨,因为见利忘义,因为欺骗欺诈,我们在毁掉眼前利益的同时,也在毁掉以后的发展,更在毁掉做人的基本体面。
尊重他人,尊重自己老师同学们早上好!今天我讲话的题目是“尊重他人,尊重自己”。我们中国是礼仪之邦,“己所不欲,勿施于人” “敬人者人恒敬之,爱人者人恒爱之”,这些藏在我们语文书日积月累中的古训我们耳熟能详。老师教会我们将心比心,一个真正懂得尊重他人的人,善待他人的人,必定能赢得他人的尊重,他人的善待。先给大家讲一个真实的故事。一天,一位妈妈带着儿子 ,儿子哭个不停,于是,她很生气地停下来,拿出纸巾给他擦鼻涕。擦完便把纸巾丢在了干净的地上。这时在旁边打扫卫生的老人,走过来把纸巾捡起来,放进了垃圾桶,什么也没有说。当妇女再次把纸巾丢在地上,老人还是静静地把它捡起来放进垃圾桶。妇女瞥了老人一眼,对儿子说:“如果你不听话,不努力学习,长大后找不到好工作,就会像那个人一样,要干这些肮脏的活,被人瞧不起!”老人走过来,说:“这里只有集团职工才可以进来,请问您是怎么进来的?”妇女很自豪地说:“我是集团营销部的经理!”老人听完,拿出手机拨了一个电话,随后便出来一位青年,老人说:“我建议您重新考虑营销部经理的人选。”
用信念拥抱人生老师、同学们:大家好!很荣幸能代表高229班在国旗下演讲,我演讲的题目是:用信念拥抱人生。曾几何时,我们在信念的鼓舞下,抛弃了一个个悲观绝望的念头,拒绝了一次次险恶的物质诱惑,攀登上一座座命运的高山……矢志不移的信念会让意志薄弱的人们变得坚强,矢志不移的信念,可以化绝望为希望,化懦弱为毅力,化黑暗为光明……在北极茫茫的大冰原上,一位迷途者,又冷又饿,凛冽的寒风让他“刻骨铭心”,饥饿的威胁使他挣扎在死亡线上,他把身子缩成一团,想蹲下来避避风雨,但是在他耳畔上始终回响着一个声音:“不能停下,否则就会有被冻僵的危险,或许前面有通向繁华世界的光明大道。”这就是信念,鼓舞人们斗志的信念。
学会做人同学们:联合国21世纪教育委员会提出21世纪教育的四大支柱,即学会求知、学会做事、学会共处、学会做人,学会做人是四大支柱的关键和核心,也是教育的目的和根本。学会做人,这是我们每个人都要面对的问题。不管一个人有多少知识,有多少财富,如果不懂得做人的道理,这个人最终不会获得真正的成功和幸福。希特勒、成克杰、胡大海,他们有知识、有财富、有地位,单他们不懂得做人的道理,最终成为历史的罪人。在新千年到来之际,西方人在评选20世纪最伟大的思想家时,把马克思排在了首位。他的思想和人格魅力永远鼓舞着一代又一代人。是盒子,埋在哪里都不会失去价值;是粪土,再张扬也逃不掉被唾弃的下场。人,从本质上讲,是社会的人。做人,在不同的国家,同一国家的不同历史时期,都被赋予不同的内容和色彩。因此,学会做人,离不开现实社会。
拥有和谐的人际关系尊敬的老师、亲爱的同学们:大家早上好!今天我讲话的题目是《拥有和谐的人际关系》。随着社会的发展,健康越来越被人们重视,一个人的健康既包括身体健康,又包括心理健康,单纯地追求身体健康而忽视心理健康,不仅会导致精神疾病的发生,而且会诱发多种身体疾病。今天我们就从人际关系方面的心理健康来和大家进行交流。在我们的校园生活中,我们常常可以看到许多同学因为一点小事,和其他同学闹别扭,或大吵大闹,甚至动拳脚。而有的同学在校园里由于任性,有好东西不愿与人分享、别人有事不愿助人,加之脾气暴躁等,造成同学之间的关系紧张,给学习、生活带来不利影响。美国著名的人际关系专家卡耐基指出:一个人事业的成功,只有15%是由于他的专业技术,另外的85%要靠人际关系和处世技巧。由此可见和谐的人际关系式何等重要。那么,作为中学生,如何学会和他人和谐相处呢?我想,拥有健康的心理至关重要。
沧海桑田,岁月无声。历史老人就像是一位顽强奋斗而永远年轻的玩世大侠,它催逝了往者,又孕育了新军。那凡夫俗子如过往云烟飘然而逝,唯有奋斗者,才是浩瀚星河中永不陨落的灿烂星辰!历史的天空闪烁几颗星星,人间一股英雄气在驰骋纵横。看,梁启超,改良的斗士;孙中山,民主的先驱;毛泽东,新中国的缔造者;邓小平,改革开放的总设计师。巨星耀银河,美名传千古,不因为他们是伟人,而在于他们在成就大业的过程中能面对逆境,舍生取义,百折不挠,倔强挺立。梁启超,科举落地而偏不重演孔乙己的悲剧;孙中山,大革命失败而高呼“同志还需努力”;毛泽东,在被围追堵截的逃亡中依然从容地四渡赤水;邓小平,九十高龄的老人却能在谈笑中换来春风春雨。伟人的奋斗固然可以传为佳话,平凡人的奋斗也许更能触发我们感慨动容。为了孩子的成长,我们的父母长年累月风雨兼程给我们送佳肴和棉衣——那翘首祈盼的焦急神情看得出好疼爱你们啊;
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。