方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为xm,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
我们知道圆是一个旋转对称图形,无论绕圆心旋转多少度,它都能与自身重合,对称中心即为其圆心.将图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,画出旋转之后的图形,比较前后两个图形,你能发现什么?二、合作探究探究点:圆心角、弧、弦之间的关系【类型一】 利用圆心角、弧、弦之间的关系证明线段相等如图,M为⊙O上一点,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.解析:连接MO,根据等弧对等圆心角,则∠MOD=∠MOE,再由角平分线的性质,得出MD=ME.证明:连接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法总结:圆心角、弧、弦之间相等关系的定理可以用来证明线段相等.本题考查了等弧对等圆心角,以及角平分线的性质.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
我省话剧《塞罕长歌》、舞蹈《人民英雄纪念碑》分别荣获“文华大奖”和群星奖;中宣部公布第十六届精神文明建设“五个一工程”获奖名单,电影《我和我的父辈》、图书“足迹”系列荣获“特别奖”,话剧《青松岭的好日子》、歌曲《春风十万里》荣获“优秀作品奖”。放眼燕赵大地,文化旅游深度融合,文化惠民工程深入实施,文化产业快速发展,新时代文化事业生机盎然。今年中秋国庆假期,全省迎来旅游消费高峰,接待游客人数、旅游收入分别达到2019年的148.8%和144.2%,其中京津游客811.89万人次,“这么近,那么美,周末到河北”成为新时尚。“精彩!过瘾!”10月20日晚,“点亮北方戏窝子”2023年东西南北中五路丝弦优秀剧目展演在石家庄拉开帷幕,32个丝弦院团轮番献艺,“北方戏窝子”焕发新风采。日前,第十九届中国吴桥国际杂技节在石家庄开场,自创办以来,来自60多个国家和地区的600多个节目、30000多名中外嘉宾和杂技艺术家相聚河北,这场“杂技的盛会”为中外文明交流互鉴注入新力量。
“开船喽!”去年6月24日,京杭大运河京冀段62公里实现互联互通。2022年6月1日起,《河北省大运河文化遗产保护利用条例》正式施行。我省积极保护好、传承好、利用好大运河,大运河沿岸生态环境、文旅融合等持续取得新进展。文艺是时代前进的号角。我省话剧《塞罕长歌》、舞蹈《人民英雄纪念碑》分别荣获“文华大奖”和群星奖;中宣部公布第十六届精神文明建设“五个一工程”获奖名单,电影《我和我的父辈》、图书“足迹”系列荣获“特别奖”,话剧《青松岭的好日子》、歌曲《春风十万里》荣获“优秀作品奖”。放眼燕赵大地,文化旅游深度融合,文化惠民工程深入实施,文化产业快速发展,新时代文化事业生机盎然。今年中秋国庆假期,全省迎来旅游消费高峰,接待游客人数、旅游收入分别达到2019年的148.8%和144.2%,其中京津游客811.89万人次,“这么近,那么美,周末到河北”成为新时尚。
月嫂服务合同双方承诺:本合同以平等,自愿,公平,公正的原则为基础,在不违反中华人民共和国法律所规定的范围内签订。聘请月嫂须知 :客户聘用月嫂,应到经政府主管部门登记注册、以月嫂家政服务为经营范围、具有法人资格的正规月嫂家政服务机构,不要在非法劳务市场中招雇。请您结合自己的情况选择月嫂服务项目,并按此规定办理:1、个人用户持居民身份证、户口本、居住证明或护照;单位用户持有合法证件及公函.2、有稳定的经济收入来源并有能力支付相关费用。3、要正确看待月嫂家政服务行业,允许月嫂服务员有一周的适应过程,尊重月嫂服务员的人格,禁止打骂、歧视或侮辱月嫂服务员,不得要求月嫂服务员工作范围以外的工作内容。 4、愿意遵守国家和地区月嫂家政服务业的行业规则,配合月嫂家政服务机构的工作。5、能如实填写客户信息登记表。 6、签订合同时知晓并认可双方的协商价格,选定服务项目、签订合同并交纳相关费用后,公司将为您提供相应期限的选项服务。 7、月嫂服务员在您家工作时,若出现身体不适或其他疾病,发生意外事件,请您务必发扬人道主义精神,及时灵活做出处理,并通报月嫂家政服务机构。
20xx.09-20xx.06 校职业发展协会 担任:组织部长l 走访了近200个寝室,招揽了新会员300多名;l 总结协会为学员提供的利益,通过印制传单、海报、横幅、设摊答疑、宿舍楼走访等方式宣传;l 多次举办30人左右的宣讲座谈会,向到会者推介协会。l 曾多次参与各项活动的策划工作,担任执行方案的策划者以及活动发起人,具备文案功底和策划思维;l 向校内外各大商家拉取活动费用及物资赞助,进行商业沟通并撰写活动及商家宣传方案提供给商家;l 做好活动前期的对外宣传工作,保证活动现场的良好执行及把握好活动期间穿插商家宣传的时间点。
坚持立行立改,在整改整治上显成效。坚持边学习、边对照、边检视、边整改,着力推动解决群众最关心最直接最现实的利益问题,不断提升人民群众的生态环境获得感、幸福感和安全感。一是全面梳理问题线索。针对巡视、审计、信访及《民声呼应》等方面反映出的问题进行全面梳理,形成四大类共18个具体问题,制定问题清单,明确整改措施、时限和责任人,及时推动整改。二是开展大排查大整治。针对xx市部分湿地公园违规乱象问题,按照市委、市政府的要求,结合ZT教育,举一反三,在全市范围内开展突出生态环境问题大排查、大整治专项行动,集中两个月时间,围绕12个重点领域,聚焦尚未整改到位、频发多发容易反弹和群众反映强烈的问题,深入开展排查整改。及时与市委ZT教育办整改整治组会商,将突出生态环境问题大排查大整治专项行动,作为市生态环境局ZT教育立行立改重点任务。坚持宣传引导,在营造氛围上持续用力。
三、以“高质量发展”检验成果,增治理之能。市粮食和物资储备局坚持以学促干,紧密结合实际,破解发展难题,以推动高质量发展新成效检验主题教育成果。一是聚焦粮食行业规范管理。针对当前粮食市场形势需要,广泛征求县(市)粮食主管部门和企业意见,推动修订地方储备粮竞价交易规则,制定《**市地方储备粮竞价采购交易规则》和《**市地方储备粮购销双向竞价交易细则》,进一步规范了粮食交易业务,推进市场主体提升依法管粮意识。二是聚焦购销领域穿透式监管。加快推进监管信息化建设,构建地储交易与储备粮监管平台之间的数据互联互通,提高我市储备粮穿透式监管水平和能力,进一步防范廉政风险。三是聚焦产销合作。开展“**粮油中国行”行动,组织企业先后走进北京、**、济南、福州等地,推介**优质粮油产品,引导市粮油集团与京粮集团深度合作,支持**与**合作,推动**产销对接,积极为我市酒用粮企业拓宽外市销售渠道,帮助企业开拓全国市场,现场成交和签订合作协议*.*亿元,签订意向协议**亿元,进一步扩大跨区域产销合作辐射面,助力**粮食走出去。
二是找准新赛道,深入推进社区信息枢纽建设。要紧盯全国一流县域治理现代化服务平台目标,深化智慧广电乡村工程全国试点创建,打通技术、采编、经营力量,推动“媒体平台”向“治理平台”转变,深入推进社区信息枢纽建设。以“未来社区”为试点,充分整合基层政务服务资源、本地公共服务资源、社区治理和自治资源。以村、社区为入口,个性化呈现为体验,标签化运行为特色,打造千人千面的掌上*app。以“治理型新闻”为突破点,擦亮“新闻为民小虎队”等特色品牌,探索“新闻+治理”、“传播+治理”、“专班+治理”新模式,提高采编工作辨识度。三是拓展新产业,探索特色项目运营。探索“草坪+”运营新模式,推进17号草坪改造提升,丰富17号品牌文化内涵,将其打造成地标文化广场。推进“曙光狮”文创IP产业化进程,开发一批符合大众审美和展现、城市形象的“曙光狮”文创周边产品。加快关键核心技术攻坚,助推产品创新数字化、生产运营智能化、用户服务敏捷化,赋能城市精细化治理,进一步提升县域治理现代化水平。
(二)坚持数字赋能,推动政务服务好办易办。一是持续推进政务服务“一网通办”。以提升高质量“一网通办”率为抓手,聚焦政务创新工单采纳,指导督促相关部门加强对涉企高频事项表单、材料、流程等办理要素的研究和梳理,压实事项部门主体责任,督促部门做好向上对接,提高工单采纳率。二是持续抓好超期受理、办理件治理工作。督促重点部门落实专人盯紧审批办件系统,按期受理办理,抓好超期件整改。三是加大政务服务网办、掌办、自助办推广力度。持续推进政务大厅智慧化建设,完善24小时全天候政务自助服务,优化“瓯e办”便民服务自助终端布点,强化政务服务网办、掌办、自助办工作导引和帮办助办,推动政务服务网办掌办自助办更加好办易办。(三)突出便民利企,推动政务服务体系建设。深化市乡村三级便民服务体系建设,持续优化“15分钟政务服务圈”,推动政务服务更便捷。
第一,知行合一,切实提高绿色低碳转型的思想自觉和行动自觉。要有全面、系统、深刻认识“30·60”内涵的思想自觉。与发达国家相比,我国仍处于快速工业化、城镇化进程,经济将在较长一段时期保持中高速增长,人均能源需求尚有较大上升空间,未来碳减排压力较大。据国际组织、科研机构测算,我国碳排放峰值将超过XXX亿吨,而XX碳排放峰值为XX亿吨,XX约为XX亿吨。我国从碳达峰到碳中和仅有XX年时间,远低于欧XX家XX-XX年的时间。“碳达峰、碳中和”不是要简单以牺牲经济增长速度、国民财富积累和人民生活水平提高为代价,而是要实现碳减排约束下全面、协调、可持续的高质量发展,需要充分、理性、智慧地平衡好生态文明建设与经济社会发展的关系。未来几十年,绿色低碳转型将嵌入所有经济活动的内核,成为投资、生产、消费和流通等决策的核心逻辑