尊敬的老师,亲爱的同学们: 大家早上好!非常高兴我们又相聚在这美好的早晨。今天我在国旗下讲话的主题是:《文明礼仪,从我做起》。文明礼仪是我们中华民族的传统美德!文明礼仪在哪里?她就在我们平时的一言一行中。在学校里,我们要尊敬老师,见到老师、同学要问好;要爱护公物、爱护花草树木,保护环境。
尊敬的老师,亲爱的同学们: 大家早上好!今天我讲话的题目是《珍爱生命,谨防溺水》。水是生命之源。它有温柔的一面,滋养着人类和万物;但也有刚烈的一面,有时竟然吞噬了人的生命。3月24日(星期六)下午3点左右 ,xx小学二年级学生xxx和我校五(1)班xx同学在xxx母亲的带领下,在xxx附近河边采野菜,三人不慎先后落水,xxx的母亲被救起,两名同学却淹死在河里,无一生还。两个原本幸福的家庭,因为孩子的溺水身亡而惨淡下去,留下了永远也抚不平的伤痛。多么惨痛的教训!
各位同学、各位老师,大家好!上星期四,我们全校师生分成两组进行了郊游活动。全体同学保持了、发扬了高度的纪律性,一路上排着整整齐齐的队伍,在道路的一侧,安全到达、安全回来,在郊游活动过程中,也没有同学吵闹,嘻笑,大家都严肃、安静、认真。不知各位同学在路上有没有发现你们在横穿马路的时候突然多了几个交通警察,在马路上指挥车辆慢行,甚至停下,让我们同学安全通过。同学们交通安全重于泰山,郊游路上的交通警察是我们学校特地为了同学们的安全请这些警察叔叔帮我们维持交通秩序的。交通安全的重要我不讲同学们也都知道,上学期我校三年级的翁卓尔和她的爷爷就是因为交通事故而不幸离开我们。我们同学也许不知道,在我们区祭扫的革命烈士墓的旁边,是甪直的公墓,那里也有好几个年轻人就是因为车祸,而丧失生命,留下年老的父母、留下年幼的孩子,每年的清明家人全都沉浸在悲痛之中,怀念不幸的亲人。那么我们怎样才能避免这样的悲剧重演呢?答案很简单,就是我们从小要养成遵守交通规则的习惯。行人、车辆都要靠右侧通行,行人走人行道,非机动车走非机动车道,机动车就走机动车道。
今天我国旗下讲话的题目是——闻鸡起舞勤奋时。同学们,首先我和大家一起重温一则历史典故。传说东晋时期将领祖逖年轻时很有抱负,每次和好友刘琨谈论时局,总是慷慨激昂、踌躇满志。一天半夜,祖逖在睡梦中听到了公鸡的鸣叫声,便对好友说:“你听见鸡叫了吗?咱们以后听见鸡叫就起床练剑如何?”刘琨欣然同意。于是,每天一听到鸡叫,他们就披衣起床,拔剑练舞。寒来暑往,经过一年又一年的勤学苦练,他们终于练就了一身好功夫,实现了报效国家的愿望。这就是“闻鸡起舞”的故事,比喻有志报国的人及时奋起。
四、说教法学法[说教法]1.指导观察法遵照学生的认知规律,充分发挥文中插图的作用,以图带文、图文并茂,既激发了学生的兴趣,也自然地加深了对课文的学习。 2.表演教学法 针对小学生的年龄特点,采用表演读,旨在创设良好的学习环境,调动学生的兴趣,诱发学生的情感,使他们投入课文所设置的情境中。 3.鼓励欣赏法 教师及时的点评,甚至学生之间的互评,都是以鼓励、欣赏为主,主要是激励学生充分地展示才能,满足他们希望得到赞许,体会成功的心理特点,激起学生学习的欲望,增强朗读的信心。[说学法]1.合作学习法在学生自读自悟的基础上,注重讨论、交流、合作、体会。让学生抓住课文主要内容的同时,能联想自己已有的知识积累。 2.美读训练法 以“看”“听”“说”“读”“悟”为主要训练方式,把“读”的训练贯穿在整个教学中,通过师与生、生与生面对面地提高、思考、讨论、交流、体会、练读逐步实现教学目标,让学生在具体的阅读实践中得到锻炼。
一、说教材《鹿角和鹿腿》是统编小学语文三年级下册第二单元中的第三篇课文,是一篇寓言故事,出自著名的《伊索寓言》。课文按事情发展的顺序,生动记叙了鹿在池塘边欣赏自己两束美丽的角,抱怨细长的腿,狮子扑来了,鹿四条细长的腿让它逃脱了,而美丽的角却让它险些送命,这个故事告诉我们:尺有所短,寸有所长;不要因为它的长处而看不见它的短处,也不要因为短处而否定长处。二、说学情三年级学生已经掌握一定的阅读方法,初步具备了独立阅读和与他人交流阅读感受的能力,但他们阅读经验尚停留在感知层面,对文章的寓意还不能准确把握。三、说教学目标1.会认“称、禁”等8个生字,读准“称、禁、撒”3个多音字,会写“鹿、塘”等13个字,正确读写“池塘、痛快”等12个词语。 2.能正确、流利、有感情地朗读课文。通过朗读,理解鹿对自己的角和腿的前后不同态度 3.体会故事中的寓意:尺有所长,寸有所短。懂得不要光图外表的美丽,更要讲实用和它的存在价值的道理。
我今天选择说课的主题内容为《长长和圆圆》。我的教育对象是小小班小朋友。小小班幼儿年龄小,语言表达能力较差,动手能力也较差,他们的思维是具体形象的,在学习过程中要着重于感知事物的明显特征,并尽量与他们自身有着较强体验的日常生活经验结合起来,因此,为小小班安排的活动内容更需易贴近幼儿的生活。就如《纲要》中所说的,“既符合幼儿园的现实需要,又有利于其长远的发展;既贴近幼儿的生活,选择幼儿感兴趣的事物和问题,又有助于拓展幼儿的经验和视野。”因此,此次的活动来源于生活,又能够服务幼儿的生活。我在“长长和圆圆”这个大主题的背景下,选择了“长长和圆圆的蔬菜”这个小主题。大家都知道,蔬菜是幼儿生活中常见的事物,我们取材也非常的方便。蔬菜的品种非常的多,它们不仅有不同的名称,还有形状的不同,颜色的不同,味道的不同等。对于小小班的幼儿,他们的认识是具体的,只能根据外部的特征来区别事物,蔬菜中的不同最直观的是外形,引导幼儿认识蔬菜的明显的外形特征是很有必要的。
高斯(Gauss,1777-1855),德国数学家,近代数学的奠基者之一. 他在天文学、大地测量学、磁学、光学等领域都做出过杰出贡献. 问题1:为什么1+100=2+99=…=50+51呢?这是巧合吗?试从数列角度给出解释.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法实际上解决了求等差数列:1,2,3,…,n,"… " 前100项的和问题.等差数列中,下标和相等的两项和相等.设 an=n,则 a1=1,a2=2,a3=3,…如果数列{an} 是等差数列,p,q,s,t∈N*,且 p+q=s+t,则 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51问题2: 你能用上述方法计算1+2+3+… +101吗?问题3: 你能计算1+2+3+… +n吗?需要对项数的奇偶进行分类讨论.当n为偶数时, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2当n为奇数数时, n-1为偶数
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
课堂教学是幼儿数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了系统的规划,遵循目标性、整体性、启发性、主体性等一系列原则进行教学设计,设计了4个主要的教学程序。1、讲故事引起兴趣,在这个环节中,利用幼儿爱听、爱看的特点,我用故事《春姑娘来了》来吸引幼儿注意力。2、指导观察,判断数量。在这个环节中,我利用卡片,让幼儿说说图中有什么不同,培养幼儿观察能力。3、运用故事转折,挑起矛盾,引出相邻数。4、运用操作,加深幼儿对数量的认识、判断,几数量与数字匹配。从而进一步巩固这节课的内容,培养幼儿动手的能力
守恒包括数的守恒、长度守恒、液量守恒、物质的量(固体量)守恒、面积守恒、质量守恒、容积守恒等。大班幼儿认知活动的具体形象性和行为的有意性明显发展,能依靠表象进行思维,认知活动的概括性使幼儿对事物的理解增强,但仍显表面化、肤浅化。因此本次活动选择的内容是网络图数守恒中的一个内容6以内数的守恒,旨在让幼儿在游戏中愉快地学习数的守恒,通过自身的操作,初步感知物体位置发生变化,总数不变的数现象。让幼儿在看一看、说一说、玩一玩、摆一摆中理解数的守恒,使幼儿对数的守恒有初步的概念。数的守恒是指物体数目不因物体外部特征和排列形式等的改变而改变,物体的数目与物体的大小、颜色、形状及排列疏密没有关系(评价标准:知道比较两组物体的多少,要以物体的数目来判断)。
8的分解是《新编学前班儿童用书——数学》学习课程上册第30页的内容。掌握8的分解是进行8的减法运算的基础。教材根据幼儿的年龄的特点,结合学生的生活实际,选择了用贴绒教具,使幼儿能直观地、快速地掌握8的分解,体验学习数学的快乐,培养幼儿对数学的情感。也正体现了《幼儿园教育指导纲要》第二部分教育内容与要求中科学教育目标:能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣。1、知识目标:通过活动掌握8的分解,知道把8分成两份有7种不同分法,学会按序分。2、能力目标:培养幼儿运用操作与同学合作的能力。3、情感态度价值观目标:激发幼儿学习数学的兴趣,培养幼儿爱数学的情感;体验与同学合作学习的快乐,培养与人合作的品质。
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。
在教学上,我采用了摸花片给幼儿猜的形式引导幼儿复习5的组成。在教学信息和感知材料的呈现上,我选用了教具模型演示法,让幼儿明确操作的要求和进行操作的方法。在思维活动的组织上,我还通过讲解、比较的方法,将幼儿解决问题的种种策略展示出来,引导幼儿观察分析,找出哪一种是最好的。坚持使教法有利于突出教材重点,突破难点,符合幼儿认识规律和年龄特征。根据教学内容和采取的教学方法及手段,我教给幼儿一些学习的方法。操作法是幼儿学习数学的基本方法。幼儿通过操作进行学习,我对幼儿的操作给予必要的指导,让幼儿去探索、发现,这样的学法可以让幼儿获得宝贵的数学经验,在教给幼儿操作法的同时,考虑到本课内容和幼儿的学习情况,对于学习速率快的幼儿,我教给他们讨论交流的方法,学习速率慢的幼儿,我教给他们按顺序有重点地观察的方法,做到授之于渔。
一、说教材《分式的加减法》是本册教材第三章《分式》重要内容,是进一步学习分式方程、反比例函数以及其它数学知识的基础,同时也是学习物理、化学等学科不可缺少的工具。与其它数学知识一样,它在实际生活中有着广泛的应用。学习分式的加减法并熟练地进行运算是学好分式运算的关键,为学生综合运用多种运算法则拓宽了空间,有利于学生对双基的掌握,在综合运用多种运算法则的过程中,逐渐形成运算能力。同时本节课的教学难度有所增加,学生通过观察、类比、猜想、尝试等一系列思维活动中,发现规则、理解规则、应用规则。考虑到以上这些因素,确定本节课的目标和重点、难点如下:(一)说教学目标:1.知识与技能目标:理解并掌握异分母分式加减法的法则;经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学生在学习中转化未知问题为已知问题的能力;进一步通过实例发展学生的符号感。
二、巨大的作用,深刻地意义材料展示:鲁迅在《狂人日记》中猛烈抨击“吃人”的封建礼教,力图通过自己的呐喊唤醒民众。高尔基早期的作品多描绘俄国沙皇制度下人民的痛苦和他们对美好生活的憧憬。20世纪初,俄国革命形势的发展使他讲文学的笔锋转向革命,创作了《母亲》等作品。合作探究:鲁迅和高尔基的作品在当时的中国和俄国分别起到了什么作用?列举喜爱的一些文学和艺术作品,说说创作者的意图是什么?引导学生自主阅读,培养自主学习能力,掌握分析归纳法和团结协作精神。学生回答之后师生共同总结:文化创新来源于社会实践,同也会对于社会实践产生新的影响,促进社会实践的变化,同时也繁荣了民族文化。所以文化创新的巨大作用一方面表现为推动社会实践的发展,另一方面表现为不断促进民族文化的繁荣。既然文化创新具有如此巨大的作用,那么作为新时代祖国的建设者为了繁荣民族文化,又该作些什么呢?进入本课第三目和教学的第三个环节。[情景回归参与生活]