一、说教材“植树问题”是人教版新课程标准实验教材五年级上册“数学广角”106页的内容。本节课主要探讨关于在一条线段植树的问题,只要教过这节课的老师都知道,即使在一条线段上植树也有不同的情形:本节课主要讲的例1,主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用画线段图的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
一、说教材《用比例解决问题》是义务教育课程标准实验教科书六年级下册第四单元比例的第三节比例的应用的一个子内容,这部分内容是在学生学习过比例的意义和基本性质,正比例和反比例意义基础上进行教学的,是比例知识的综合运用。教材在这部分内容中安排了例5和例6两个含正、反比例的问题,这类问题学生实际上已经接触过,只是用归一、归总的方法来解答,本节课要让学生从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略。通过解答可以使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列方程,也可以巩固和加深对所学的简易方程的认识。所以这一教学内容既是对前面所学的正、反比例知识的巩固和应用,另外也是为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
一、说教材分析《真理诞生于一百个问号之后》是第五单元的一篇精读课文,也是一篇议论文。文题“真理诞生于一百个问号之后”也是课文的主要观点。全文结构清晰:第1自然段开门见山,提出观点,明确指出:“真理诞生于一百个问号之后”本身就是“真理”。主体部分(2—8自然段)引用科学发展史上的三个有代表性的事例(谢皮罗教授从洗澡水的漩涡中发现问题,通过反复试验和研究,发现水的漩涡的旋转方向和地球的自转有关;德国地质学家魏格纳从蚯蚓的分布,推论地球上大陆与海洋的形成;奥地利医生从儿子做梦时眼珠转动这个现象,经过反复观察和分析,推断出凡睡者眼珠转动时都表示在做梦),论述了只要善于观察,不断发问,不断解决疑问,锲而不舍地追根求源,就能在现实生活中发现真理。第三部分(9、10自然段)总结全文,重申观点。指出科学并不神秘,也不遥远,关键在于“知微见著”,不断探索,善于独立思考,具有锲而不舍的精神。
一、说教材《真理诞生于一百个问号之后》是统编语文小学六年级下册第五单元中的一篇精读课文,属于议论文。课文的题目也是课文的主要观点。课文用三个具体确凿的事例论述了只要善于观察,不断发问,不断解决疑问,锲而不舍地追根求源,就能在现实生活中发现真理。 选编这篇课文的意图,一是让学生了解科学家发现的一般规律——真理诞生于一百个问号之后,从中感受到,领悟到:见微知著,独立思考,锲而不舍,不断探索的科学精神。二是学习课文用具体典型的事例说明观点的写作方法了解议论文的形式。二、说教学目标1.会写“域、惯”等12个字,会写“真理、领域”等词语。 2.能联系上下文理解含义深刻的句子。能仿照课文的写法写一段话,用具体事实说明一个观点。 3.理解三个关于科学发现的故事,能从具体事例中正确理解“真理诞生于一百个问号之后”的含义。
在展示交流,精讲点拨环节学生答题过程中老师巡视,发现不同的方法让学生去板演。1、学生展示学生展示不同的方法,并进行讲解,让学生充分说出自己的思路及解题过程。在这一环节,学生进行了充分的互动,有质疑,有解疑,有纠错,有评价,有反馈,。2、教师根据学生的方法及时利用多媒体进行演示,让学生更加直观的理解不同的解题思路。然后变换题中的条件,让学生自己列方程解答。3、说一说生活中那些情境也可以用类似的等量关系式解答,这一设计让数学回归生活,加强了数学与生活的联系。在达标检测,强化巩固环节老师以课本为主,让学生完成课本练一练的2,4基础题。又进行了拓展,出了一道稍有难度的题进行拓展练习。既巩固了基础,又做到了分层优化。在小结评价,自我反思环节让学生说说本节课的收获,可以是学习上的,也可以是习惯上的。让学生进行了自我反思,反思自己的不足,加以改正。
将三盒磁带包成一包,共有几种方案?怎样包装才能节约包装纸?(接口处不计)这道题,我会组织每一位学生进行摆一摆、想一想、算出最优方案。此时,学生对于包装的问题已经有了从感性到理性的认识,因此,可以让学生将前面总结出来的规律进行完善,突出了教学重点。教师板书:重叠面积大的面,会节约包装纸。(四)综合实践,提高能力。在这一环节,我设计了一道题。如果把4盒磁带包装成一大盒。怎样包装才最节约包装纸?此题让学生小组合作动手摆一摆。学生汇报时,教师多媒体演示:学生根据前面总结出来的规律,会立刻回答出是第一种方案。此环节的设计,使学生在运用规律的基础上能够解决实际问题,得到最优方案,也突破了教学难点。(五)课堂总结。这一环节,我会让学生说一说自己的学习体会。然后送给学生两条名言。
师:同学们真聪明,小精灵的问题回答出来了,现在就让我们一起走进儿童乐园吧。(出示课件)请大家注意观察,儿童乐园中都有哪些景点?师:从儿童乐园出发经过百鸟园去猴山一共有几条路?请同学们仔细观察:从儿童乐园到百鸟园有几条路?从百鸟园去猴山有几条路?(生回答。)师:我们给这5条路分别标上序号。(课件演示)现在请同学们想一想从儿童乐园的入口经过百鸟园到达猴山一共有几条路线?请同学们把答案写在记录纸上。(生汇报。)师:路线设计好了,让我们一起到猴山看一看可爱的小猴子吧!(放猴山的录像。)师:看,它们是一对著名的动物小明星,会演杂技的小猴宝宝和贝贝,你们想和它们照相留念吗?生:想。师:好!那我们每个人都和宝宝、贝贝各照一张相片,同学们想一想,我们全班40个人一共要照多少张相片儿呢?
(设计意图:建构主义学习观认为,知识不是被动接受的,而是由学习主体主动建构的。鉴于此,以上设计中,改变了以往的例题示范、讲解为主的教学方式,而是放手让学生自主探索,把发现知识的权利还给了学生,学生拥有了真正自主探索的空间,那些原本应有教师去“教”的知识被学生主动地建构,学生真正成为学习的主人。此外,通过比较、点题环节设计,突出了本课的重点,帮助学生明确了思维方向,有效地促进了学生知识的正迁移。)5.总结:虽然解答方法不同,但结果是一样的,都是用连乘的方法解决实际问题的,这就是我们今天学习的用两步连乘解决实际问题。(揭示课题)在解决这类的实际问题时我们应该怎样去思考?你有什么好的策略、方法介绍给大家吗?(关键就是要找到有直接关系的两个信息,看能求出什么,再一步步地解答。)
3、小结比较观察三种方法,提出问题:为什么同一个问题有三种不同的解决方法?学生交流,教师小结:先解决的问题不同,选择的信息不同,图形拼摆的不同,解决的方法就不同,体现数形结合的思想。相同点是:无论思路如何,都是用连乘的方法解决问题。板书课题:解决问题——两步连乘应用题生活中还有很多这样的清况,想不想再尝试一下。(三)联系生活,优化方法,拓展深化,学校有特异为这些参加比赛的同学们购买了矿泉水,出示画面:共有20箱矿泉水,每箱24瓶,每瓶2元,请问学校共要支付多少钱?学生独立完成观察和思考的角度不同,先后选择的信息不同,所以同一道题有不同的解决方法。看来大家多用连乘的方法解决问题有了进一步的理解。生活中类似这样的问题很多,再来看一看:学校定好了水,付了钱,总得运回来吧.出示搬运车搬水到卡车上的画面:搬运车一次搬4摞,一摞3箱,一箱24瓶,请问搬运车一次能搬多少瓶?
1、基础题:妈妈煎鱼,一次锅里最多能煎3条鱼,每煎一面要4分钟,怎样才能最快煎鱼完9条鱼?(学生独立练习,指明一个学生板书,并说说解答的思路过程)2、提高题:在上题的基础上,把问题改成:怎样才能最快煎鱼完8条鱼?(学生发现总共16个面,16除以3等于5次还余1个面,那怎么办呢?可让学生讨论交流,余下的一个面还要煎一次,也就是5+1=6次,再用6乘4得到最快要24分钟。)当次数出现有余数时,我们采用进一法再加一次,公式还是成立。3、拓展题:那么怎样才能最快煎好15条?47条?100条鱼呢?[设计意图]经练习中巩固和验证了总结的规律,在练习的不同层次上满足了不同学生的学习需求,同时让学生感受到了数学与生活的密切联系,提高了学生解决实际问题的能力。四、归纳总结,提出希望。今天的这节课同学们有什么收获啊?生活中处处都有数学,只要同学们有一双善于观察和发现的眼睛,积极动脑思考,你一定会有收获。
《排队问题》是人教版教材第七册《数学广角》中的内容,是继“烙饼问题”、“沏茶问题”之后再一次向学生渗透运用运筹思想解决生活实际问题的新增内容。排队论是关于随机服务系统的理论,其中的一项研究是怎样使服务对象的等候时间最少的问题。这部分知识对学生来说,比较抽象,难以理解的。但由于学生在日常生活中都有过排队等候的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过演绎、例举、观察、分析、优化,形象地帮助学生理解什么是“等候时间的总和”,以及归纳出按怎样的顺序安排才会使等候时间的总和最少。本节课采用“阅读-讨论式教学法”。通过让学生阅读教材中的主题图和相关文字,初步感知生活中的数学现象,通过讨论,合作学习,探索出各种排队等候的方案,在通过计算,对每种方案进行选择,从而找到最优化方法,在此过程中,让学生体会到运筹思想在解决生活中实际问题的作用。
四、学以致用。1、用比例解决下列问题。五、课后延伸,深化拓展1、万老师骑摩托车从家到学校上班,6分钟行使了480米,照这样计算,他从家到学校共行使了20分钟。他家到学校的距离有多少米?2、今年元旦那天,小丽的妈妈到银川商城购物,发现有件保暖内衣质量不错,于是买了3件,共付了180元。回来后,邻居张大妈也想买几件,于是乘车到银川商城买同样的保暖内衣,她共付了300元,能买几件?3、解决课前提出的问题。(学校旗杆高一般由学校面积大小而定)提醒:同一时间、同一地点的身高和影长成正比例。根据实际情况,可以独立解答,也可以讨论解答。4、实践作业。1、一根粗细均匀的圆木,锯成了5段共用了326分钟,照这样计算,如果把这根圆木 锯成7段,需要多少分钟?2、请同学们利用上一题的原理测一测咱们学校的教学楼的高度。六、课堂总结。说说你的收获。评价自己的表现。教学反思:这节课上完之后我有以下三点感悟:( 一)课堂永远是无法完全预设的
(2)请你思考:师:这样就需要设计一张其他面值的邮票,如果最高的资费是6元,那么用3张邮票来支付时,面值对大的邮票是几元?可增加什么面值的邮票?(学生分组讨论设计思考)生:6元除以3元就是2元,可增加的邮票面值可为2.0元,2.4元或4.0元。(3)小结:虽然满足条件的邮票组合很多,但邮政部门在发行邮票时,还要从经济、合理等角度考虑。【设计意图:大胆放手,让学生参与数学活动。让学生成为课堂的主体,让他们在动手、动脑、动口的过程中学到知识和思维的方法,知识的获得和学习方法的形成都是在学生“做”的过程中形成的。】四、巩固深化:1、如果小明的爸爸要给小明回一封不足20g的信,他该贴多少钱的邮票?2、如果小明的好朋友要寄一封39g的信,他该贴多少钱的邮票?五、课后实践:课后给你的亲戚或者好朋友寄封信。
(1)提问:用自己的话说一说画面的内容。根据画面的内容编一道应用题。可先让学生自由编题,然后出示:面包房一共做了54个面包,第一队小朋友买了8个,第二队小朋友买了22个,现在剩下多少个?(2)全班同学读题后提问:题目的已知条件和问题分别是什么?根据“一共做了54个面包,第一队小朋友买了8个”这两个条件可以求什么?(第一队买后还剩下多少个)怎样列式?【54-8=46(个)】那要求还剩下多少个?又该怎样列式?【46-22=24(个)】谁能列一个综合算式?【54-8-22=24(个)】(列好后,要求学生说出每一步算式的意义)教师:大家想一想还有没有不同的想法?(鼓励学生从不同角度去思考问题)根据“第一队小朋友买了8个,第二队小朋友买了22个”可以求出什么问题?(两队一共买了多少个面包?)可以怎样列式?【8+22=30(个)】那要求还剩下多少个?又该怎样列式?【54-30=24(个)】同桌的同学互相讨论一下:如果写成一个算式,应该怎样列式?
《贴邮票》活动要求:A、每组4人,给四封不同地点、质量的信件B、根据信封上的信息计算邮费并按要求贴上邮票(邮票的总面值刚好等于邮费,不能多贴)每封信最多贴三张邮票,只有0.8元或1.2元的两种邮票纪律要求:看看哪组合作得最好,速度最快!如果遇到困难,在事发那个在一边最后再去解决。3、小组汇报(1)、贴邮票的过程中大家遇到了什么问题?(有的能贴有的不能贴)这样的信件有哪些?(告诉我地点、质量、邮费)(2)、其他的信件都能贴出来嘛?说说看你是怎么贴邮票的?(3)、请将你们贴好邮票的信件送到邮箱来。剩下的都是一些“难题”(4)、思考:为什么4.0元、4.8元、6元的邮费没有办法按要求贴出邮票?(5)、原因出在哪里?这个问题怎么解决?(邮票面值太小,将邮票的面值改大)(6)、那最少要改成多大的?为什么?(将邮票面值改大,你会从多大面值的邮票开始考虑?为什么?)
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)(1)某种菜籽的出油率是36%。(2)实际用电量占计划用电量的80%。(3)李家今年荔枝产量是去年的120%。二、新授1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。(1)计划造林是实际造林的百分之几?(2)实际造林是计划造林的百分之几?(3)实际造林比计划造林增加百分之几?(4)计划早林比实际造林少百分之几?2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。3、学生自主解决“实际早林比计划增加了百分之几”的问题。(1)分析数量关系,让学生自己尝试着用线段图表示出来。
【设计意图】通过认识自我这一环节的设计,让学生能够准确的理解矛盾的主次方面,做到能够正确的评价事物,尤其是能够正确的认识评价自己和他人,做到扬长避短,从而达到情感态度价值观目标。为了更好的区分主次矛盾与矛盾的主次方面,在此我以小组赛的形式设计了【我用我学正确识别】这一学生合作探究活动来强化对知识的掌握。(用时大约6分钟)。通过对难点主次矛盾和矛盾主次方面的深入学习,师生共同找出其共同之处:均是两点与重点,从而讲解主次矛盾和矛盾主次方面共同的方法论要求:坚持两点论与重点论的统一。3、坚持具体问题具体分析(约8分钟)由于第二目知识点具体问题具体分析内容上比较简单,因此在过渡后主要以学生自学为主,我围绕“成功”制作两个幻灯片作简单讲解与归纳。
五.说教学过程:(重点)1.课题引入:课堂探究导入新课。采用教材现成的探究活动导入新课,既“温故”又“知新”,还节约了课堂有效时间。2.讲授新课:(20-25分钟)本课的重难点是关于哲学基本问题的解释,我引用一个很著名的学生也略知一二的唯心主义观点的例子(课堂探究1)顺利进入本课重要知识点的学习,采用案例教学,激发学生的兴趣以及探究问题的欲望,学习哲学基本问题的第一个方面,并用问题和练习形式巩固知识,强化学生易错已混知识点;课堂探究2,同样引用哲学上的著名案例让学生分析探究思考以及合作交流,学生趣味浓厚,主动深入学习本课知识,达到预期教学目的。此时,本课的重点知识教学完成。关于本课的第二个知识点“为什么思维和存在的关系问题是哲学的基本问题”采用学生自主阅读、合作交流的方法,归纳总结,完成本知识目标。3.课堂反馈、知识迁移(10-15分钟)采用学生总结、随堂练习等形式巩固本课知识,同时检验教学效果。可使学生更深刻的理解教学重点。
2、系统的基本特征系统观念为人们把握复杂事物提供了一系列科学方法和原则。第一,整体性原则。第二,有序性原则。第三,优化原则。学生的兴趣被激发,可以再调起高潮,让学生听一首歌曲,三个和尚挑水,让学生从愉快的歌声中,明白一个道理:“三个和尚没水喝”,导致这一结果的根本原因就在于人数虽然多了,但没有形成合理的结构,不是相互支持,相互促进,而是相互制肘、相互消磨,结果各要素的力量或作用被内耗了,出现了1+1<2的效应。所以,就要求我们一定要做到:3、掌握系统优化的方法的要求(1)着眼于事物的整体性;遵循系统内部结构的有序性;注重系统内部结构的优化趋向。(2)用综合的思维方式来认识事物巩固练习:以巩固知识为基础,培养能力为目标。
②关于哲学的第二个问题是——思维和存在有没有同一性解释同一性——就是说意识(思维)能否正确认识物质(存在)的问题。(让学生表达他们自己的意见)总结得出三种看法——认为意识(思维)可以正确认识物质(存在)的,属于可知论者;凡是认为意识(思维)不能正确认识物质(存在),属于不可知论者。当然也有些同学是两者观点都有,这种同学我们把他称为不彻底的不可知论者。2、为什么思维和存在的关系问题是哲学的基本问题(1)它是人们在生活和实践活动中首先遇到和无法回避的基本问题(举例说明问题,吃饭的时候吃什么菜,学习计划与学习的实际等等)结合教材P10探究进行讲解举例:11月31日请全班同学吃雪糕,吃完后再去肯德基大吃一顿,之后再到卡拉OK唱通宵——不切实际,因为11月并没有31日。(2)它是一切哲学都不能回避、必须回答的问题(不同的回答,直接决定着哲学的不同发展方向。)
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。